
Tagged Deterministic Finite Automata with Lookahead

Ulya Trofimovich
skvadrik@.gmail.com

August 2017

Abstract

This paper extends the work of Laurikari [Lau00] [Lau01] and Kuklewicz [Kuk07] on tagged deterministic finite
automata (TDFA) in the context of submatch extraction in regular expressions. The main goal of this work
is application of TDFA to lexer generators that optimize for speed of the generated code. I suggest a number
of practical improvements to Laurikari algorithm; notably, the use of one-symbol lookahead, which results in
significant reduction of tag variables and operations on them. Experimental results confirm that lookahead-aware
TDFA are considerably faster and usually smaller than baseline TDFA; and they are reasonably close in speed
and size to ordinary DFA used for recognition of regular languages. The proposed algorithm can handle repeated
submatch and therefore is applicable to full parsing. Furthermore, I examine the problem of disambiguation
in the case of leftmost greedy and POSIX policies. I formalize POSIX disambiguation algorithm suggested by
Kuklewicz and show that the resulting TDFA are as efficient as Laurikari TDFA or TDFA that use leftmost
greedy disambiguation. All discussed algorithms are implemented in the open source lexer generator RE2C.

Introduction

RE2C is a lexer generator for C: it compiles regular
expressions into C code [BC93] [RE2C]. Unlike regular
expression libraries, lexer generators separate compila-
tion and execution steps: they can spend considerable
amount of time on compilation in order to optimize
the generated code. Consequently, lexer generators are
usually aimed at generating efficient code rather than
supporting multiple extensions; they use deterministic
automata and avoid features that need more complex
computational models. In particular, RE2C aims at
generating lexers that are at least as fast as reason-
ably optimized hand-coded lexers. It compiles regu-
lar expressions into deterministic automata, applies a
number of optimizations to reduce automata size and
converts them directly into C code in the form of con-
ditional jumps: this approach results in more efficient
and human-readable code than table-based lexers. In
addition, RE2C has a flexible interface: instead of us-
ing a fixed program template, it lets the programmer
define most of the interface code and adapt the lexer
to a particular environment.

One useful extension of traditional regular expressions
that cannot be implemented using ordinary DFA is
submatch extraction and parsing. Many authors stud-
ied this subject and developed algorithms suitable for
their particular settings and problem domains. Their
approaches differ in various respects: the specific sub-
type of problem (full parsing, submatch extraction

with or without history of repetitions), the underlying
formalism (backtracking, nondeterministic automata,
deterministic automata, multiple automata, lazy de-
terminization), the number of passes over the input
(streaming, multi-pass), space consumption with re-
spect to input length (constant, linear), handing of
ambiguity (unhandled, manual disambiguation, de-
fault disambiguation policy, all possible parse trees),
etc. Most of the algorithms are unsuitable for RE2C:
they are either insufficiently generic (cannot handle
ambiguity), or too heavyweight (incur overhead on
regular expressions with only a few submatches or no
submatches at all). Laurikari algorithm is outstanding
in this regard. It is based on a single deterministic
automaton, runs in one pass and requires linear time,
and the consumed space does not depend on the in-
put length. What is most important, the overhead on
submatch extraction depends on the detalization of
submatch: on submatch-free regular expressions Lau-
rikari automaton reduces to a simple DFA.

From RE2C point of view this is close enough to
hand-written code: you only pay for what you need,
like a reasonable programmer would do. However, a
closer look at Laurikari automata reveals that they
behave like a very strange programmer who is unable
to think even one step ahead. Take, for example, reg-
ular expression a*b* and suppose that we must find
the position between a and b in the input string. The
programmer would probably match all a, then save
the input position, then match all b:

1

while (*s++ == ’a’) ;

p = s;

while (*s++ == ’b’) ;

And this corresponds to automaton behavior:

p = s;

while (*s++ == ’a’) p = s;

while (*s++ == ’b’) ;

This behavior is correct (it yields the same result), but
strangely inefficient: it repeatedly saves input position
after every a, while for the programmer it is obvious
that there is nothing to save until the first non-a. One
might object that the C compiler would optimize out
the difference, and it probably would in simple cases
like this. However, the flaw is common to all Laurikari
automata: they ignore lookahead when recording sub-
matches. But they don’t have to; with a minor fix
we can teach them to delay recording until the right
lookahead symbol shows up. This minor fix is my first
contribution.

Another problem that needs attention is disambigua-
tion. The original paper [Lau01] claims to have POSIX
semantics, but it was proved to be wrong [LTU]. Since
then Kuklewicz suggested a fix for Laurikari algorithm
that does have POSIX semantics [Regex-TDFA], but
he never formalized the resulting algorithm. The in-
formal description [Kuk07] is somewhat misleading
as it suggests that Kuklewicz automata require addi-
tional run-time operations to keep track of submatch
history and hence are less efficient than Laurikari au-
tomata. That is not true, as we shall see: all the
added complexity is related to determinization, while
the resulting automata are just the same (except they
have POSIX semantics). Kuklewicz did not emphasize
this, probably because his implementation constructs
TDFA lazily at run-time. I formalize Kuklewicz algo-
rithm; this is my second contribution.

Finally, theory is no good without practice. Even
lookahead-aware automata contain redundant oper-
ations which can be reduced by basic optimizations
like liveness analysis and dead code elimination. The
overall number of submatch records can be minimized
using technique similar to register allocation. I sug-
gest another tweak of Laurikari algorithm that makes
optimizations particularly easy and show that they are
useful even in the presence of an optimizing C com-
piler. RE2C implementation of submatch extraction
is the motivation and the main goal of this work.

The rest of this paper is arranged as follows. We
start with theoretical foundations and gradually move
towards practical algorithms. Section 1 revises the
basic definition of regular expressions. In section 2 we
extend it with tags and define ambiguity with respect
to submatch extraction. In section 3 we convert reg-
ular expressions to nondeterministic automata and in

section 4 study various algorithms for ε-closure con-
struction. Section 5 tackles disambiguation problem;
we discuss leftmost greedy and POSIX policies and
the necessary properties that disambiguation policy
should have in order to allow efficient submatch ex-
traction. Section 6 is the main part of this paper: it
describes determinization algorithm. Section 7 high-
lights some practical implementation details and opti-
mizations. Section 8 concerns correctness testing and
benchmarks. Finally, section 9 contains conclusions
and section 10 points directions for future work.

1 Regular expressions

Regular expressions are a notation that originates in
the work of Kleene “Representation of Events in Nerve
Nets and Finite Automata” [Kle51] [Kle56]. He used
this notation to describe regular events: each regular
event is a set of definite events, and the class of all
regular events is defined inductively as the least class
containing basic events (empty set and all unit sets)
and closed under the operations of sum, product and
iterate. Kleene showed that regular events form ex-
actly the class of events that can be represented by
McCulloch-Pitts nerve nets or, equivalently, finite au-
tomata. However, generalization of regular events to
other fields of mathematics remained an open problem;
in particular, Kleene raised the question whether regu-
lar events could be reformulated as a deductive system
based on logical axioms and algebraic laws. This ques-
tion was thoroughly investigated by many authors (see
[Koz94] for a historic overview) and the formalism be-
came known as the algebra of regular events or, more
generally, the Kleene algebra K=(K,+, ·, ∗, 1, 0). Sev-
eral different axiomatizations of Kleene algebra were
given; in particular, Kozen gave a finitary axiomati-
zation based on equations and equational implications
and sound for all interpretations [Koz94]. See also
[Gra15] for extensions of Kleene algebra and general-
ization to the field of context-free languages.

The following definition of regular expressions, with
minor notational differences, is widely used in litera-
ture (see e.g. [HU90], page 28, or [SS88], page 67):

Definition 1. Regular expression (RE) over finite al-
phabet Σ is one of the following:

∅, ε and α∈Σ (atomic RE)
(e1|e2), where e1, e2 are RE over Σ (sum)
(e1e2), where e1, e2 are RE over Σ (product)
(e∗), where e is a RE over Σ (iteration)

�

The usual assumption is that iteration has precedence
over product and product has precedence over sum,
and redundant parentheses may be omitted. ∅ and

2

ε are special symbols not included in the alphabet Σ
(they correspond to 1 and 0 in the Kleene algebra).
Since RE are only a notation, their exact meaning de-
pends on the particular interpretation. In the standard
interpretation RE denote languages: sets of strings
over the alphabet of RE.

Let ε denote the empty string (not to be confused with
RE ε), and let Σ∗ denote the set of all strings over Σ
(including the empty string ε).

Definition 2. Language over Σ is a subset of Σ∗. �

Definition 3. Union of two languages L1 and L2 is
L1 ∪ L2 = {x | x∈L1 ∨ x∈L2} �

Definition 4. Product of two languages L1 and L2 is
L1 · L2 = {x1x2 | x1∈L1 ∧ x2∈L2} �

Definition 5. n-Th Power of language L is

Ln =

{
{ε} if n=0
L · Ln−1 if n>0

�

Definition 6. Iterate of language L is L∗ =
∞⋃
n=0

Ln.

�

Definition 7. (Language interpretation of RE)
RE denotes a language over Σ:

L[[∅]] = ∅
L[[ε]] = {ε}
L[[α]] = {α}

L[[e1|e2]] = L[[e1]] ∪ L[[e2]]

L[[e1e2]] = L[[e1]] · L[[e2]]

L[[e∗]] = L[[e]]∗

�

Other interpretations are also possible; one notable ex-
ample is the type interpretation, in which RE denote
sets of parse trees [BT10] [Gra15]. This is close to what
we need for submatch extraction, except that we are
interested in partial parse structure rather than full
parse trees.

Definition 8. Language L over Σ is regular iff exists
RE e over Σ such that L is denoted by e: L[[e]]=L. �

For the most useful RE there are special shortcuts:

en for

n︷ ︸︸ ︷
e . . . e

en,m for en|en+1| . . . |em−1|em
en, for ene∗

e+ for ee∗

e? for e|ε

2 Tagged extension

In short, tags are position markers attached to the
structure of RE. The idea of adding such markers is
not new: many RE flavors have capturing groups, or
the lookahead operator, or pre- and post-context op-
erators; all of them are used for submatch extraction
of some sort.1 Laurikari used the word tag. He did
not define tags explicitly; rather, he defined automata
with tagged transitions. We take a slightly different
approach, inspired by [BT10], [Gra15] and a number
of other publications. First, we define an extension of
RE: tagged RE, and two interpretations: S-language
that ignores tags and T-language that preserves them.
T-language has the bare minimum of information nec-
essary for submatch extraction; in particular, it is less
expressive than parse trees or types that are used for
RE parsing. Then we define ambiguity and disam-
biguation policy in terms of relations between the two
interpretations. Finally, we show how T-language can
be converted to tag value functions used by Laurikari
and argue that the latter representation is insufficient
as it cannot express ambiguity in certain RE.

In tagged RE we use generalized repetition en,m (where
0 ≤ n ≤m ≤∞) instead of iteration e∗ as one of the
three base operations. The reason for this is the follow-
ing: bounded repetition cannot be expressed in terms
of union and product without duplication of RE, and
duplication may change semantics of submatch extrac-
tion. For example, POSIX RE (a(b?)){2} contains
two submatch groups (aside from the whole RE), but
if we rewrite it as (a(b?))(a(b?)), the number of
submatch groups will change to four. Generalized rep-
etition, on the other hand, allows to express all kinds
of iteration without duplication.

Definition 9. Tagged regular expression (TRE) over
disjoint finite alphabets Σ and T is one of the following:

∅, ε, α∈Σ and t∈T (atomic TRE)
(e1|e2), where e1, e2 are TRE over Σ, T (sum)
(e1e2), where e1, e2 are TRE over Σ, T (product)
(en,m), where e is a TRE over Σ, T

and 0≤n≤m≤∞ (repetition)

�

As usual, we assume that repetition has precedence
over product and product has precedence over sum,
and redundant parentheses may be omitted. Addition-

1Position markers in RE are sometimes used in a different sence: Watson mentions the dotted RE [Wat93] that go back to DeRemers’s
construction of DFA, which originates in LR parsing invented by Knuth. The dot itself is the well-known LR item which separates the
already parsed and yet unparsed parts of the rule.

3

ally, the following shorthand notation may be used:

e∗ for e0,∞

e+ for e1,∞

e? for e0,1

en for en,n

Definition 10. TRE over Σ, T is well-formed iff all
tags in it are pairwise different and T ={1, . . . , |T |}. �
We will consider only well-formed TRE.

If we assume that tags are aliases to ε, then every
TRE over Σ, T is a RE over Σ: intuitively, this cor-
responds to erasing all submatch information. We call
this S-language interpretation (short from “sigma” or
“source”), and the corresponding strings are S-strings:

Definition 11. (S-language interpretation of TRE)
TRE over Σ, T denotes a language over Σ:

S[[∅]] = ∅
S[[ε]] = {ε}
S[[α]] = {α}
S[[t]] = {ε}

S[[e1|e2]] = S[[e1]] ∪ S[[e2]]

S[[e1e2]] = S[[e1]] · S[[e2]]

S[[en,m]] =

m⋃
i=n

S[[e]]i

�

On the other hand, if we interpret tags as symbols,
then every TRE over Σ, T is a RE over the joined al-
phabet Σ ∪ T . This interpretation retains submatch
information; however, it misses one important detail:
negative submatches. Negative submatches are implic-
itly encoded in the structure of TRE: we can always
deduce the absence of tag from its presence on alter-
native branch of TRE. To see why this is important,
consider POSIX RE (a(b)?)* matched against string
aba. The outermost capturing group matches twice at
offsets 0, 2 and 2, 3 (opening and closing parentheses
respectively). The innermost group matches only once
at offsets 1, 2; there is no match corresponding to the
second outermost iteration. POSIX standard demands
that the value on the last iteration is reported: that
is, the absence of match. Even aside from POSIX, one
might be interested in the whole history of submatch.
Therefore we will rewrite TRE in a form that makes
negative submatches explicit (by tracking tags on al-
ternative branches and inserting negative tags at all
join points). Negative tags are marked with bar, and

T denotes the set of all negative tags.

Definition 12. Operator X rewrites TRE over Σ, T

to a TRE over Σ, T ∪ T :

X (∅) = ∅
X (ε) = ε

X (α) = α

X (t) = t

X (e1|e2) = X (e1)χ(e2) | X (e2)χ(e1)

X (e1e2) = X (e1)X (e2)

X (en,m) =

{
X (e)1,m | χ(e) if n=0

X (e)n,m if n≥1

where χ(e) = t1 . . . tn, such that

t1 . . . tn are all tags in e

�

Definition 13. (T-language interpretation of TRE)

TRE over Σ, T denotes a language over Σ ∪ T ∪ T :
T [[e]] = L[[ẽ]], where ẽ is a RE syntactically identical to
TRE X (e). �

The language over Σ∪T ∪T is called T-language (short
from “tag” or “target”), and its strings are called T-
strings. For example:

T [[β|(α1)0,2]] = T [[β1|
(
(α1)1,2|1

)
]] =

= T [[β1]] ∪ T [[(α1)1,2]] ∪ T [[1]] =

= T [[β]] · T [[1]] ∪ T [[α1]] ∪ T [[α1]] · T [[α1]] ∪ {1} =

= {β1} ∪ {α1} ∪ {α1α1} ∪ {1} =

= {β1, 1, α1, α1α1}

Definition 14. The untag function S converts T-
strings into S-strings: S(γ0 . . . γn)=α0 . . . αn, where:

αi =

{
γi if γi∈Σ
ε otherwise

�

It is easy to see that for any TRE e, S[[e]] is exactly
the same language as {S(x) | x∈T [[e]]}. Moreover, the
relation between S-language and T-language describes
exactly the problem of submatch extraction: given a
TRE e and an S-string s∈ S[[e]], find the correspond-
ing T-string x∈T [[e]] (in other words, translate a string
from S-language to T-language). However, there might
be multiple such T-strings, in which case we speak of
ambiguity.

Definition 15. T-strings x and y are ambiguous iff
x 6=y and S(x)=S(y). �

We can define equivalence relation ' on the T-
language: let x ' y ⇔ S(x) = S(y). Under this re-
lation each equivalence class with more than one ele-
ment forms a maximal subset of pairwise ambiguous
T-strings.

4

Definition 16. For a TRE e disambiguation policy is
a strict partial order ≺ on L=T [[e]], such that for each
subset of pairwise ambiguous T-strings it is total (∀
ambiguous x, y ∈ L: either x ≺ y or y ≺ x), and the
minimal T-string in this subset exists (∃x∈L : ∀y∈L |
ambiguous x, y : x ≺ y). �

We will return to disambiguation in section 5.

In practice obtaining submatch results in a form of
a T-string is inconvenient. A more practical repre-
sentation is the tag value function used by Laurikari:
a separate list of offsets in the input string for each
tag. Tag value functions can be trivially reconstructed
from T-strings. However, the two representations are
not equivalent; in particular, tag value functions have
a weaker notion of ambiguity and fail to capture am-
biguity in some TRE, as shown below. Therefore we
use T-strings as a primary representation and convert
them to tag value functions after disambiguation.

Definition 17. Decomposition of a T-string x =
γ1 . . . γn is a tag value function H : T → (N∪ {0,∅})∗
that maps each tag to a string of offsets in S(x):
H(t)=ϕt1 . . . ϕ

t
n, where:

ϕti =

{
∅ if γi= t
|S(γ1 . . . γi)| if γi= t
ε otherwise

�

Negative submatches have no exact offset: they can
be attributed to any point on the alternative path of
TRE. We use a special value ∅ to represent them (it
is semantically equivalent to negative infinity).

For example, for a T-string x= α12β2βα12, possibly
denoted by TRE (α1(2β)∗)∗, we have S(x) = αββα
and tag value function:

H(t)=

{
1 4 if t=1
1 2∅ if t=2

Decomposition is irreversible in general: even if we
used a real offset instead of ∅, we no longer know the
relative order of tags with equal offsets. For exam-
ple, TRE (1(3 4)1,32)2, which may represent POSIX
RE ((){1,3}){2}, denotes ambiguous T-strings x =
1343421342 and y=1342134342. According to POSIX,
first iteration has higher priority than the second one,
and repeated empty match, if optional, should be
avoided, therefore y ≺ x. However, both x and y de-
compose to the same tag value function:

H(t)=


0 0 if t=1
0 0 if t=2
0 0 0 if t=3
0 0 0 if t=4

Moreover, consider another T-string z=134213434342
denoted by this RE. By the same reasoning z ≺ x and
y ≺ z. However, comparison of tag value functions
cannot yield the same result (since x, y have the same
tag value function and z has a different one). In prac-
tice this doesn’t cause disambiguation errors as long
as the minimal T-string corresponds to the minimal
tag value function, but in general the order is different.

Decomposition can be computed incrementally in a
single left-to-right pass over the T-string: αi in def-
inition 14 and ϕti in definition 17 depend only on γj
such that j≤ i.

3 From TRE to automata

Both S-language and T-language of the given TRE are
regular, and in this perspective submatch extraction
reduces to the problem of translation between regular
languages. The class of automata capable of perform-
ing such translation is known as finite state transducers
(FST) (see e.g. [Ber13], page 68). TNFA, as defined
by Laurikari in [Lau01], is a nondeterministic FST that
decomposes output strings into tag value functions and
then applies disambiguation. Our definition is different
in the following aspects. First, we apply disambigua-
tion before decomposition (for the reasons discussed
in the previous section). Second, we do not consider
disambiguation policy as an attribute of TNFA: the
same TNFA can be simulated with different policies,
though not always efficiently. Third, we include infor-
mation about TRE structure in the form of prioritized
ε-transitions: it is used by some disambiguation poli-
cies. Finally, we add negative tagged transitions.

Definition 18. Tagged Nondeterministic Finite Au-
tomaton (TNFA) is a structure (Σ, T, P,Q, F, q0,∆),
where:

Σ is a finite set of symbols (alphabet)

T is a finite set of tags

P is a finite set of priorities

Q is a finite set of states

F ⊆ Q is the set of final states

q0 ∈ Q is the initial state

∆=∆Σ t∆ε is the transition relation, where:

∆Σ ⊆ Q× Σ× {ε} ×Q
∆ε ⊆ Q× (P ∪ {ε})× (T ∪ T ∪ {ε})×Q

and all ε-transitions from the same state have dif-
ferent priorities: ∀(x, r, ε, y), (x̃, r̃, ε, ỹ)∈∆ε : x=
x̃ ∧ y= ỹ ⇒ r 6= r̃.

�

TNFA construction is similar to Thompson NFA con-
struction, except for priorities and generalized repeti-

5

tion. For the given TRE e over Σ, T , the correspond-
ing TNFA is N (e) = (Σ, T, {0, 1}, Q, {y}, x,∆), where
(Q, x, y,∆)=F(X (e)) and F is defined as follows:

F(∅) = ({x, y}, x, y, ∅)
F(ε) = ({x, y}, x, y, {(x, ε, ε, y)})
F(α) = ({x, y}, x, y, {(x, α, ε, y)})
F(t) = ({x, y}, x, y, {(x, ε, t, y)})

F(e1|e2) = F(e1) ∪ F(e2)

F(e1e2) = F(e1) · F(e2)

F(en,∞) = F(e)n,∞

F(en,m) = F(e)n,m

F1 ∪ F2 = (Q, x, y,∆)

where (Q1, x1, y1,∆1) = F1

(Q2, x2, y2,∆2) = F2

Q = Q1 ∪Q2 ∪ {x, y}
∆ = ∆1 ∪∆2 ∪ {

(x, 0, ε, x1), (y1, ε, ε, y),

(x, 1, ε, x2), (y2, ε, ε, y)}

Figure 1: Automata union.

F1 · F2 = (Q, x1, y2,∆)

where (Q1, x1, y1,∆1) = F1

(Q2, x2, y2,∆2) = F2

Q = Q1 ∪Q2

∆ = ∆1 ∪∆2 ∪ {(y1, ε, ε, x2)}

Figure 2: Automata product.

Fn,∞ = (Q, x1, yn+1,∆)

where {(Qi, xi, yi,∆i)}ni=1 = {F, . . . , F}

Q =
⋃n

i=1
Qi ∪ {yn+1}

∆ =
⋃n

i=1
∆i ∪ {(yi, ε, ε, xi+1)}n−1

i=1

∪ {(yn, 0, ε, xn), (yn, 1, ε, yn+1)}

Figure 3: Unbounded repetition of automata.

Fn,m = (Q, x1, ym,∆)

where {(Qi, xi, yi,∆i)}mi=1 = {F, . . . , F}

Q =
⋃m

i=1
Qi

∆ =
⋃m

i=1
∆i ∪ {(yi, ε, ε, xi+1)}n−1

i=1

∪ {(yi, 0, ε, xi+1), (yi, 1, ε, ym)}m−1
i=n

Figure 4: Bounded repetition of automata.

The above construction of TNFA has certain proper-
ties that will be used in subsequent sections.

Observation 1. We can partition all TNFA states
into three disjoint subsets:

1. states that have outgoing transitions on symbols;
2. states that have outgoing ε-transitions;
3. states without outgoing transitions (including

the final state);
This statement can be proved by induction on the
structure of TNFA: automata for atomic TRE ∅, ε,
α, t obviously satisfy it; compound automata F1 ∪ F2,
F1 · F2, Fn,∞ and Fn,m do not violate it: they only
add outgoing ε-transitions to those states that have no
outgoing transitions, and their final state is either a
new state without outgoing transitions, or final state
of one of the subautomata.

Observation 2. For repetition automata Fn,∞ and
Fn,m the number of iterations uniquely determines the
order of subautomata traversal: by construction sub-
automaton corresponding to (i+1)-th iteration is only
reachable from the one corresponding to i-th iteration
(in case of unbounded repetition it may be the same
subautomaton).

Definition 19. A path in TNFA (Σ, T, P,Q, F, q0,∆)
is a sequence of transitions {(qi, αi, ai, q̃i)}ni=1 ⊆ ∆,
where n≥0 and q̃i=qi+1 ∀i=1, n− 1. �

Definition 20. Path {(qi, αi, ai, q̃i)}ni=1 in TNFA
(Σ, T, P,Q, F, q0,∆) is accepting if either n=0∧ q0∈F
or n>0 ∧ q1 =q0 ∧ q̃n∈F . �

Definition 21. Every path π = {(qi, αi, ai, q̃i)}ni=1 in
TNFA (Σ, T, P,Q, F, q0,∆) induces an S-string, a T-
string and a string over P called bitcode:

S(π) = α1 . . . αn

T (π) = α1γ1 . . . αnγn γi =

{
ai if ai∈T ∪ T
ε otherwise

B(π) = β1 . . . βn βi =

{
ai if ai∈P
ε otherwise

�

6

Definition 22. TNFA N transduces S-string s to a

T-string x, denoted s
N−→ x if s=S(x) and there is an

accepting path π in N , such that T (π)=x. �

The set of all S-strings that are transduced to some
T-string is the input language of TNFA; likewise, the
set of all transduced T-strings is the output language
of TNFA. It is easy to see that for every TRE e the
input language of TNFA N (e) equals to its S-language
S[[e]] and the output language of N (e) equals to its T-
language T [[e]] (proof is by induction on the structure
of TRE and by construction of TNFA).

The simplest way to simulate TNFA is as follows.
Starting from the initial state, trace all possible paths
that match the input string; record T-strings along
each path. When the input string ends, paths that
end in a final state are accepting; choose the one with
the minimal T-string (with respect to disambiguation
policy). Convert the resulting T-string into tag value
function. At each step the algorithm maintains a set
of configurations (q, x) that represent current paths:
q is TNFA state and x is the induced T-string. The
efficiency of this algorithm depends on the implemen-
tation of closure, which is discussed in the next section.

transduce((Σ, T, P,Q, F, q0, T,∆), α1 . . . αn)

X←closure({(q0, ε)}, F,∆)

for i=1, n do
Y ←reach(X,∆, αi)
X←closure(Y, F,∆)

x←min≺{x | (q, x)∈X ∧ q∈F}
return H(x)

reach(X,∆, α)

return {(p, xα) | (q, x)∈X ∧ (q, α, ε, p)∈∆}

4 Tagged ε-closure

The most straightforward implementation of closure
(shown below) is to simply gather all possible non-
looping ε-paths. Note that we only need paths that
end in the final state or paths which end state has out-
going transitions on symbols: all other paths will be
dropped by reach on the next simulation step. Such
states are called core states; they belong to subsets 1
or 3 in observation 1.

closure(X,F,∆)

empty stack, result←∅
for (q, x)∈X : do

push(stack, (q, x))
while stack is not empty do

(q, x)←pop(stack)
result←result ∪ {(q, x)}
foreach outgoing arc (q, ε, χ, p)∈∆ do

if 6 ∃(p̃, x̃) on stack : p̃=p then
push(stack, (p, xχ))

return {(q, x)∈result | core(q, F,∆)}

core(q, F,∆)

return q∈F ∨ ∃α, p : (q, α, ε, p)∈∆

Since there might be multiple paths between two given
states, the number of different paths may grow up ex-
ponentially in the number of TNFA states. If we prune
paths immediately as they arrive at the same TNFA
state, we could keep the number of active paths at any
point of simulation bounded by the number of TNFA
states. However, this puts a restriction on disambigua-
tion policy: it must allow to compare ambiguous T-
strings by their ambiguous prefixes. We call such pol-
icy prefix-based ; later we will show that both POSIX
and leftmost greedy policies have this property.

Definition 23. Paths π1 = {(qi, αi, ai, q̃i)}ni=1 and
π2 ={(pi, βi, bi, p̃i)}mi=1 are ambiguous if their start and
end states coincide: q1 =p1, q̃n= p̃m and their induced
T-strings T (π1) and T (π2) are ambiguous. �

Definition 24. Disambiguation policy for TRE e is
prefix-based if it can be extended on the set of am-
biguous prefixes of T-strings in T [[e]], so that for any
ambiguous paths π1, π2 in TNFA N [[e]] and any com-
mon suffix π3 the following holds: T (π1) ≺ T (π2) ⇔
T (π1π3) ≺ T (π2π3). �

The problem of closure construction can be expressed
in terms of single-source shortest-path problem in di-
rected graph with cycles and mixed (positive and neg-
ative) arc weights. (We assume that all initial closure
states are connected to one imaginary “source” state).
Most algorithms for solving shortest-path problem
have the same basic structure (see e.g. [Cor09], chap-
ter 24): starting with the source node, repeatedly
scan nodes; for each scanned node apply relaxation to
all outgoing arcs; if path to the given node has been
improved, schedule it for further scanning. Such algo-
rithms are based on the optimal substructure principle:
any prefix of the shortest path is also a shortest path.
In our case tags do not map directly to weights and
T-strings are more complex than distances, but direct
mapping is not necessary: optimal substructure prin-
ciple still applies if the disambiguation policy is prefix-
based, and relaxation can be implemented via T-string

7

comparison and extension of T-string along the given
transition. Also, we assume absence of epsilon-loops
with “negative weight”, which is quite reasonable for
any disambiguation policy. Laurikari gives the follow-
ing algorithm for closure construction (see Algorithm
3.4 in [Lau01]):

closure laurikari(X,F,∆)

empty deque, result(q) ≡ ⊥
indeg← indegree(X,∆)
count← indeg
for (q, x)∈X do

relax(q, x, result, deque, count, indeg)
while deque is not empty do

q←pop front(deque)
foreach outgoing arc (q, ε, χ, p)∈∆ do

x←result(q)χ
relax(p, x, result, deque, count, indeg)

return {(q, x) | x=result(q) ∧ core(q, F,∆)}

relax(q, x, result, deque, count, indeg)

if x ≺ result(q) then
result(q)←x
count(p)←count(p)− 1
if count(p)=0 then

count(p)← indeg(p)
push front(deque, q)

else
push back(deque, q)

indegree(X,∆)

empty stack, indeg(q) ≡ 0
for (q, x)∈X do

push(stack, q)
while stack is not empty do

q←pop(stack)
if indeg(q)=0 then

foreach outgoing arc (q, ε, χ, p)∈∆ do
push(stack, p)

indeg(q)← indeg(q) + 1

return indeg

We will refer to the above algorithm as LAU. The
key idea of LAU is to reorder scanned nodes so that
ancestors are processed before their descendants. This
idea works well for acyclic graphs: scanning nodes in
topological order yields a linear-time algorithm [Cor09]
(chapter 24.2), so we should expect that LAU also has
linear complexity on acyclic graphs. However, the way
LAU decrements in-degree is somewhat odd: decre-
ment only happens if relaxation was successful, while
it seems more logical to decrement in-degree every
time the node is encountered. Another deficiency is
that nodes with zero in-degree may occur in the middle
of the queue, while the first node does not necessarily

have zero in-degree. These observations lead us to
a modification of LAU, which we call LAU1 (all the
difference is in relax procedure):

relax(q, x, result, deque, count, indeg)

if count(q)=0 then
count(q)← indeg(q)

count(p)←count(p)− 1
if count(p)=0 and p is on deque then

remove(deque, p)
push front(deque, p)

if x ≺ result(q) then
result(q)←x
if q is not on deque then

if count(q)=0 then
push front(deque, q)

else
push back(deque, q)

Still for graphs with cycles worst-case complexity of
LAU and LAU1 is unclear; usually algorithms that
schedule nodes in LIFO order (e.g. Pape-Levit) have
exponential complexity [SW81]. However, there is an-
other algorithm also based on the idea of topological
ordering, which has O(nm) worst-case complexity and
O(n + m) complexity on acyclic graphs (where n is
the number of nodes and m is the number of edges).
It is the GOR1 algorithm described in [GR93] (the
version listed here is one of the possible variations of
the algorithm):

closure goldberg radzik(X,F,∆)

empty stacks topsort, newpass
result(q) ≡ ⊥
status(q) ≡ OFFSTACK
for (q, x)∈X do

relax(q, x, result, topsort)
while topsort is not empty do

while topsort is not empty do
q←pop(topsort)
if status(q)=TOPSORT then

push(newpass, n)
else if status(q)=NEWPASS then

status(q)←TOPSORT
push(topsort, q)
scan(q, result, topsort)

while newpass is not empty do
q←pop(newpass)
scan(q, result, topsort)
status(q)←OFFSTACK

return {(q, x) | x=result(q) ∧ core(q, F,∆)}

8

scan(q, result, topsort)

foreach outgoing arc (q, ε, χ, p)∈∆ do
x←result(q)χ
relax(p, x, result, topsort)

relax(q, x, result, topsort)

if x ≺ result(q) then
result(q)←x
if status(q) 6= TOPSORT then

push(topsort, q)
status(q)←NEWPASS

In order to better understand all three algorithms and
compare their behavior on various classes of graphs
I used the benchmark suite described in [CGR96]. I
implemented LAU, LAU1 and the above version of

GOR1; source codes are freely available in [Tro17] and
open for suggestions and bug fixes. The most im-
portant results are as follows. On Acyc-Neg family
(acyclic graphs with mixed weights) LAU is non-linear
and significantly slower, while LAU1 and GOR1 are
both linear and LAU1 scans each node exactly once.
On Grid-NHard and Grid-PHard families (graphs with
cycles designed to be hard for algorithms that exploit
graph structure) both LAU and LAU1 are very slow
(though approximation suggests polynomial, not ex-
ponential fit), while GOR1 is fast. On other graph
families all three algorithms behave quite well; it is
strange that LAU is fast on Acyc-Pos family, while
being so slow on Acyc-Neg family. See also [NPX99]:
they study two modifications of GOR1, one of which is
very close to LAU1, and conjecture (without a proof)
that worst-case complexity is exponential.

Figure 5: Behavior of LAU, LAU1 and GOR1 on Acyc-Neg family of graphs.
Left: normal scale, right: logarithmic scale on both axes.

Figure 6: Behavior of LAU, LAU1 and GOR1 on Grid-Nhard family of graphs.
Left: normal scale, right: logarithmic scale on both axes.

9

5 Disambiguation

In section 2 we defined disambiguation policy as strict
partial order on the T-language of the given TRE. In
practice T-language may be very large or infinite and
explicit listing of all ambiguous pairs is not an op-
tion; we need a comparison algorithm. There are two
main approaches: structure-based and value-based.
Structure-based disambiguation is guided by the order
of operators in RE; tags play no role in it. Value-based
disambiguation is the opposite: it is defined in terms of
maximization/minimization of certain tag parameters.
As a consequence, it has to deal with conflicts between
different tags — a complication that never arises for
structure-based approach. Moreover, in value-based
disambiguation different tags may have different rules
and relations. Below is a summary of two real-world
policies supported by RE2C:

• Leftmost greedy. Match the longest possible pre-
fix of the input string and take the leftmost path
through RE that corresponds to this prefix: in
unions prefer left alternative, in iterations prefer
re-iterating.

• POSIX. Each subexpression including the RE
itself should match as early as possible and span
as long as possible, while not violating the whole
match. Subexpressions that start earlier in RE
have priority over those starting later. Empty
match is considered longer than no match; re-
peated empty match is allowed only for non-
optional repetitions.

As we have already seen, a sufficient condition for
efficient TNFA simulation is that the policy is prefix-
based. What about determinization? In order to
construct TDFA we must be able to fold loops: if
there is a nonempty loop in TNFA, determinization
must eventually construct a loop in TDFA (otherwise
it won’t terminate). To do this, determinization must
establish equivalence of two TDFA states. From dis-
ambiguation point of view equivalence means that all
ambiguities stemming from one state are resolved in
the same way as ambiguities stemming from the other.
However, we cannot demand exact coincidence of all
state attributes engaged in disambiguation: if there is
loop, attributes in one state are extensions of those in
the other state (and hence not equal). Therefore we
need to abstract away from absolute paths and define
“ambiguity shape” of each state: relative order on all
its configurations. Disambiguation algorithm must be
defined in terms of relative paths, not absolute paths.
Then we could compare states by their orders. If dis-
ambiguation policy can be defined in this way, we call
it foldable.

In subsequent sections we will formally define both
policies in terms of comparison of ambiguous T-strings
and show that each policy is prefix-based and foldable.

Leftmost greedy

Leftmost greedy policy was extensively studied by
many authors; we will refer to [Gra15], as their setting
is very close to ours. We can define it as lexico-
graphic order on the set of all bitcodes corresponding
to ambiguous paths (see [Gra15], definition 3.25). Let
π1, π2 be two ambiguous paths which induce T-strings
x=T (π1), y=T (π2) and bitcodes a=B(π1), b=B(π2).
Then x ≺ y iff ≺lexicographic (a, b):

≺lexicographic (a1 . . . an, b1 . . . bm)

for i=1,min(n,m) do
if ai 6=bi then return ai<bi

return n<m

This definition has one caveat: the existence of min-
imal element is not guaranteed for TRE that contain
ε-loops. For example, TNFA for ε+ has infinitely many
ambiguous paths with bitcodes of the form 0̂n1̂, where
n≥ 0, and each bitcode is lexicographically less than
the previous one. Paths that contain ε-loops are called
problematic (see [Gra15], definition 3.28). If we limit
ourselves to non-problematic paths (e.g. by cancelling
loops in ε-closure), then the minimal element exists
and bitcodes are well-ordered.

Lemma 1. Let Π be a set of TNFA paths that start
in the same state, induce the same S-string and end in
a core state (e.g. the set of active paths on each step of
TNFA simulation). Then the set of bitcodes induced
by paths in Π is prefix-free (compare with [Gra15],
lemma 3.1).

Proof. Consider paths π1 and π2 in Π and suppose
that B(π1) is a prefix of B(π2). Then π1 must be a pre-
fix of π2: otherwise there is a state where π1 and π2

diverge, and by TNFA construction all outgoing tran-
sitions from this state have different priorities, which
contradicts the equality of bitcodes. Let π2 = π1π3.
Since S(π1) = S(π2), and since S(ρσ) = S(ρ)S(σ) for
arbitrary path ρσ, it must be that S(π3)=ε. The end
state of π2 is a core state: by observation 1 it has no
outgoing ε-transitions. But the same state is also the
start state of ε-path π3, therefore π3 is an empty path
and π1 =π2. �

From lemma 1 it easily follows that leftmost greedy
disambiguation is prefix-based. Consider ambiguous
paths π1, π2 and arbitrary suffix π3, and let B(π1)=a,
B(π2) = b, B(π3) = c. Note that B(ρσ) = B(ρ)B(σ)
for arbitrary path ρσ, therefore B(π1π3) = ac and
B(π2π3) = bc. If a= b, then ac= bc. Otherwise, with-
out loss of generality let a ≺lexicographic b: since a,

10

b are prefix-free, ac ≺lexicographic bc (compare with
[Gra15], lemma 2.2).

From lemma 1 it also follows that leftmost greedy dis-
ambiguation is foldable: prefix-free bitcodes can be
compared incrementally on each step of simulation.
We define “ambiguity shape” of TDFA state as lexico-
graphic order on bitcodes of all paths represented by
configurations (compare with [Gra15], definition 7.14).
The number of different weak orderings of n elements
is finite, therefore determinization terminates (this
number equals

∑n
k=0

{
n
k

}
k!, also known as the ordered

Bell number). Order on configurations is represented
with ordinal numbers assigned to each configuration.
Ordinals are initialized to zero and then updated on
each step of simulation by comparing bitcodes. Bit-
codes are compared incrementally: first, by ordinals
calculated on the previous step, then by bitcode frag-
ments added by the ε-closure.

≺leftmost greedy ((n, a), (m, b))

if n 6=m then return n<m
return ≺lexicographic (a, b)

ordinals({(qi, oi, xi)}ni=1)

{(pi, Bi)}← sort {(i, (oi, xi))} by second
component using ≺leftmost greedy
let op1(t)=0, ord←0

for i=2, n do
if Bi−1 6=Bi then ord←ord+1
let opi(t)=ord

return {(qi, oi, xi)}ni=1

In practice explicit calculation of ordinals and com-
parison of bitcodes is not necessary: if we treat TDFA
states as ordered sets, sort TNFA transitions by their
priority and define ε-closure as a simple depth-first
search, then the first path that arrives at any state
would be the leftmost. This approach is taken in e.g.
[Kar14]. Since tags are not engaged in disambigua-
tion, we can use paired tags that represent capturing
parentheses, or just standalone tags — this makes no
difference with leftmost greedy policy.

POSIX

POSIX policy is defined in [POSIX]; [Fow03] gives
a comprehensible interpretation of it. We will give
a formal interpretation in terms of tags; it was first
described by Laurikari in [Lau01], but the key idea
should be absolutely attributed to Kuklewicz [Kuk07].
He never fully formalized his algorithm, and our ver-
sion slightly deviates from the informal description, so
all errors should be attributed to the author of this
paper. Fuzz-testing RE2C against Regex-TDFA re-
vealed a couple of rare bugs in submatch extraction

in Regex-TDFA, but for the most part the two imple-
mentations agree (see section 8 for details).

POSIX disambiguation is defined in terms of subex-
pressions and subpatterns: subexpression is a paren-
thesized sub-RE and subpattern is a non-parenthesized
sub-RE. Submatch extraction applies only to subex-
pressions, but disambiguation applies to both: sub-
patterns have “equal rights” with subexpressions. For
simplicity we will now assume that all sub-RE are
parenthesized; later in this section we will discuss the
distinction in more detail.

POSIX disambiguation is hierarchical: each subexpres-
sion has a certain priority relative to other subex-
pressions, and disambiguation algorithm must con-
sider subexpressions in the order of their priorities.
Therefore we will start by enumerating all subex-
pressions of the given RE according to POSIX stan-
dard: outer ones before inner ones and left ones be-
fore right ones. Enumeration is done by rewriting
RE e into an indexed RE (IRE): a pair (i, ẽ), where
i is the index and ẽ mirrors the structure of e, ex-
cept that each sub-IRE is an indexed pair rather than
a RE. For example, RE a∗(b|ε) corresponds to IRE
(1, (2, (3, a)∗)(4, (5, b)|(6, ε))). Enumeration operator I
is defined below: it transforms a pair (e, i) into a pair
(ẽ, j), where e is a RE, i is the start index, ẽ is the
resulting IRE and j is the next free index.

I(∅, i) = ((i, ∅), i+1)

I(ε, i) = ((i, ε), i+1)

I(α, i) = ((i, α), i+1)

I(e1|e2, i) = ((i, ẽ1|ẽ2), k)

where (ẽ1, j)=I(e1, i+1), (ẽ2, k)=I(e2, j+1)

I(e1e2, i) = ((i, ẽ1ẽ2), k)

where (ẽ1, j)=I(e1, i+1), (ẽ2, k)=I(e2, j+1)

I(en,m, i) = ((i, ẽn,m), j)

where (ẽ, j)=I(e, i+1)

Now that the order on subexpressions is defined, we
can rewrite IRE into TRE by rewriting each indexed
subexpression (i, e) into tagged subexpression t1e t2,
where t1 = 2i−1 is the start tag and t2 = 2i is the end
tag. If e is a repetition subexpression, then t1 and t2
are called orbit tags. TRE corresponding to the above
example is (1 3 (5 a 6)∗ 4 7 (9 b 10|11 ε 12)8 2).

According to POSIX, each subexpression should start
as early as possible and span as long as possible. In
terms of tags this means that the position of start
tag is minimized, while the position of the end tag is
maximized. Subexpression may match several times,
therefore one tag may occur multiple times in the T-
string. Obviously, orbit tags may repeat; non-orbit

11

tags also may repeat provided that they are nested
in a repetition subexpression. For example, TRE
(1 (3 (5 a 6|7 b 8) 4)∗ 2) that corresponds to POSIX RE

(a|b)* denotes T-string 1 3 5 a 6 7 8 4 3 5 a 6 7 8 4 2 (cor-
responding to S-string aa), in which orbit tags 3 and
4 occur twice, as well as non-orbit tags 5, 6, 7 and 8.
Each occurrence of tag has a corresponding offset : ei-
ther ∅ (for negative tags), or the number of preceding
symbols in the S-string. The sequence of all offsets is
called history : for example, tag 3 has history 0 1 and
tag 7 has history ∅∅. Each history consists of one
or more subhistories: longest subsequences of offsets
not interrupted by tags of subexpressions with higher
priority. In our example tag 3 has one subhistory 0 1,
while tag 7 has two subhistories ∅ and ∅. Non-orbit
subhistories contain exactly one offset (possibly ∅); or-
bit subhistories are either ∅, or may contain multiple
non-∅ offsets. Histories can be reconstructed from T-
strings as follows:

history(a1 . . . an, t)

i←1, j←1, pos←0
while true do

while i ≤ n and ai 6∈{t, t} do
if ai∈Σ then pos←pos+1
i← i+1

while i ≤ n and ai 6∈hightags(t) do
if ai∈Σ then pos←pos+1
if ai= t then Aj←Ajpos

if ai= t then Aj←Aj∅
i← i+1

if i>n then break
j←j+1

return A1 . . . Aj

hightags(t)

return {u, u | u < 2dt/2e−1}

Due to the hierarchical nature of POSIX disambigua-
tion, if comparison reaches i-th subexpression, it means
that all enclosing subexpressions have already been
compared and their tags coincide. Consequently the
number of subhistories of tags 2i − 1 and 2i in the
compared T-strings must be equal.

If disambiguation is defined on T-string prefixes, then
the last subhistory may be incomplete. In particular,
last subhistory of start tag may contain one more offset
than last subhistory of end tag. In this case we assume
that the missing offset is∞, as it must be greater than
any offset in the already matched S-string prefix.

Disambiguation algorithm for TRE with N subexpres-
sions is defined as comparison of T-strings x and y:

≺POSIX (x, y)

for t=1, N do
A1 . . . An←history(x, 2t−1)
C1 . . . Cn←history(x, 2t)
B1 . . . Bn←history(y, 2t−1)
D1 . . . Dn←history(y, 2t)

for i=1, n do
let a1 . . . am=Ai, b1 . . . bk=Bi
let c1 . . . cm̃=Ci, d1 . . . dk̃=Di

if m̃<m then cm←∞
if k̃<k then dk←∞
for j=1,min(m, k) do

if aj 6=bj then return aj<bj
if cj 6=dj then return cj>dj

if m 6=k then return m<k

return false

It’s not hard to show that ≺POSIX is prefix-based.
Consider t-th iteration of the algorithm and let
s = 2t−1 be the start tag, history(x, s) = A1 . . . An
and history(y, s) = B1 . . . Bn. The value of each
offset depends only on the number of preceding
Σ-symbols, therefore for an arbitrary suffix z we
have: history(xz, s) = A1 . . . An−1A

′
nC1 . . . Cn and

history(yz, s) = B1 . . . Bn−1B
′
nC1 . . . Cn, where A′n =

Anc1 . . . cm, B′n = Bnc1 . . . cm. The only case when
z may affect comparison is when m ≥ 1 and one
history is a proper prefix of the other: Ai = Bi
for all i = 1, n− 1 and (without loss of generality)
Bn=Anb1 . . . bk. Otherwise either histories are equal,
or comparison terminates before reaching c1. Let
d1 . . . dk+m = b1 . . . bkc1 . . . cm. None of dj can be
∅, because n-th subhistory contains multiple offsets.
Therefore dj are non-decreasing and dj ≤ cj for all
j = 1,m. Then either dj < cj at some index j ≤ m,
or A′n is shorter than B′n; in both cases comparison is
unchanged. The same reasoning holds for the end tag.

It is less evident that ≺POSIX is foldable: the rest
of this chapter is a long and tiresome justification of
Kuklewicz algorithm (with a couple of modifications
and ideas by the author).

First, we simplify ≺POSIX . It makes a lot of re-
dundant checks: for adjacent tags the position of the
second tag is fixed on the position of the first tag. In
particular, comparison of the start tags aj and bj is
almost always redundant. Namely, if j > 1, then aj
and bj are fixed on cj−1 and dj−1, which have been
compared on the previous iteration. If j = 1, then
aj and bj are fixed on some higher-priority tag which
has already been checked, unless t= 1. The only case
when this comparison makes any difference is when
j = 1 and t = 1: the very first position of the whole
match. In order to simplify further discussion we will
assume that the match is anchored; otherwise one can

12

handle it as a special case of comparison algorithm.
The simplified algorithm looks like this:

≺POSIX (x, y)

for t=1, N do
A1 . . . An←history(x, 2t)
B1 . . . Bn←history(y, 2t)

for i=1, n do
if Ai 6=Bi then return Ai ≺subhistory Bi

return false

≺subhistory (a1 . . . an, b1 . . . bm)

for i=1,min(n,m) do
if ai 6=bi then return ai>bi

return n<m

Next, we explore the structure of ambiguous paths that
contain multiple subhistories and show that (under cer-
tain conditions) such paths can be split into ambiguous
subpaths, one per each subhistory.

Lemma 2. Let e be a POSIX TRE and suppose that
the following conditions are satisfied:

1. a, b are ambiguous paths in TNFA N (e) that
induce T-strings x=T (a), y=T (b)

2. t is a tag such that history(x, t) = A1 . . . An,
history(y, t)=B1 . . . Bn

3. for all u < t: history(x, u) = history(y, u) (tags
with higher priority agree)

Then a and b can be decomposed into path segments
a1 . . . an, b1 . . . bn, such that for all i≤n subpaths ai,
bi have common start and end states and contain sub-
histories Ai, Bi respectively: history(T (a1 . . . ai), t) =
A1 . . . Ai, history(T (b1 . . . bi), t) =B1 . . . Bi.

Proof. Proof is by induction on t and relies on the con-
struction of TNFA given in section 3. Induction basis
is t= 1 and t= 2 (start and end tags of the topmost
subexpression): let n=1, a1 =a, b1 =b. Induction step:
suppose that lemma is true for all u<t, and for t the
conditions of lemma are satisfied. Let r be the start tag
of a subexpression in which t is immediately enclosed.
Since r < t, the lemma is true for r by inductive hy-
pothesis; let c1 . . . cm, d1 . . . dm be the corresponding
path decompositions. Each subhistory of t is covered
by some subhistory of r (by definition history doesn’t
break at lower-priority tags), therefore decompositions
a1 . . . an, b1 . . . bn can be constructed as a refinement
of c1 . . . cm, d1 . . . dm. If r is a non-orbit tag, each sub-
history of r covers exactly one subhistory of t and the
refinement is trivial: n = m, ai = ci, bi = di. Other-
wise, r is an orbit tag and single subhistory of r may
contain multiple subhistories of t. Consider path seg-
ments ci and di: since they have common start and end
states, and since they cannot contain tagged transi-
tions with higher-priority tags, both must be contained
in the same subautomaton of the form F k,l. This sub-

automaton itself consists of one or more subautomata
for F each starting with an r-tagged transition; let
the start state of each subautomaton be a breaking
point in the refinement of ci and di. By observation
2 the number of iterations through F k,l uniquely de-
termines the order of subautomata traversal. Since
history(x, r) = history(y, r), the number of iterations
is equal and therefore breaking points coincide. �

Lemma 2 has the following implication. Suppose that
during simulation we prune ambiguous paths imme-
diately as they transition to to the same state, and
suppose that at p-th step of simulation we are compar-
ing histories A1 . . . An, B1 . . . Bn of some tag. Let j≤n
be the greatest index such that all offsets in A1 . . . Aj ,
B1 . . . Bj are less than p (it must be the same index for
both histories because higher-priority tags coincide).
Then Ai = Bi for all i ≤ j: by lemma 2 A1 . . . Aj ,
B1 . . . Bj correspond to subpaths which start and end
states coincide; these subpaths are either equal, or
ambiguous, in which case they must have been com-
pared on some previous step of the algorithm. This
means that we only need to compare Aj+1 . . . An and
Bj+1 . . . Bn. Of them only Aj+1 and Bj+1 may have
offsets less than p: all other subhistories belong to cur-
rent ε-closure; the last pair of subhistories An, Bn may
be incomplete. Therefore we only need to remember
Aj+1, Bj+1 from the previous simulation step, and we
only need to pass An, Bn to the next step. In other
words, between simulation steps we need only the last
subhistory for each tag.

Now we can define “ambiguity shape” of TDFA state:
we define it as a set of orders, one per tag, on the
last subhistories of this tag in this state. As with left-
most greedy policy, the number of different orders is fi-
nite and therefore determinization terminates. In fact,
comparison only makes sense for subhistories that cor-
respond to ambiguous paths (or path prefixes), and
only in case when higher-priority tags agree. We do
not know in advance which prefixes will cause ambi-
guity on subsequent steps, therefore some comparisons
may be meaningless: we impose total order on a set
which is only partially ordered. However, meaningless
comparisons do not affect valid comparisons, and they
do not cause disambiguation errors: their results are
never used. At worst they can prevent state merging.
Kuklewicz suggests to group orbit subhistories by their
base offset (position of start tag on the first iteration)
prior to comparison. However, experiments with such
grouping revealed no effect on state merging, and for
simplicity we abandon the idea of partial ordering.

Definition 25. Subhistories of the given tag are com-
parable if they correspond to prefixes of ambiguous
paths and all higher-priority tags agree.

13

Lemma 3. Comparable orbit subhistories can be com-
pared incrementally with ≺subhistory.

Proof. Consider subhistories A, B at some step of
simulation and let A ≺subhistory B. We will show that
comparison result will not change on subsequent steps,
when new offsets are added to A and B. First, note
that ∅ can be added only on the first step of compari-
son: negative orbit tags correspond to the case of zero
iterations, and by TNFA construction for F 0,m they
are reachable by ε-transitions from the initial state,
but not from any other state of this subautomaton.
Second, note that non-∅ offsets increase with each
step. Based on these two facts and the definition of
≺subhistory, the proof is trivial by induction on the
number of steps. �

Lemma 4. Comparable non-orbit subhistories can be
compared incrementally with ≺subhistory in case of end
tags, but not in case of start tags.

Proof. Non-orbit subhistories consist of a single off-
set (either ∅ or not), and ambiguous paths may dis-
cover it at different steps. Incremental comparison
with ≺subhistory is correct in all cases except one: when
∅ is discovered at a later step than non-∅.

For start tags it is sufficient to show an example of such
case. Consider TRE 1(3 a 4|5 a 6)2 that corresponds to
POSIX RE (a)|(a) and denotes ambiguous T-strings
x=1 3 a 4 5 6 2 and y=1 5 a 6 3 4 2. Subhistory of start
tag 3 in y changes from ε on the first step (before con-
suming a) to ∅ on the second step (after consuming
a), while subhistory in x remains 0 on both steps.

For end tags we will show that the faulty case is not
possible: comparable subhistories must add ∅ at the
same step as non-∅. Consider non-orbit end tag t.
Non-∅ and ∅ must stem from different alternatives of
a union subexpression e1|e2, where e1 contains t and
e2 does not. Since subhistories of t are comparable, e1

cannot contain higher-priority tags: such tags would
be negated in e2 and comparison would stop before t.
Consequently, e1 itself must be the subexpression that
ends with t. By construction of TNFA for e1|e2 all
paths through it contain a single t-tagged transition at
the very end (either positive or negative). Therefore
both ∅ and non-∅ must be discovered at the same step
when ambiguous paths join. �

This asymmetry between start and end tags in caused
by inserting negative tags at the end of alternative
branches; if we inserted them at the beginning, then
non-orbit tags would also have the property that ∅
belongs to the first step of comparison. Inserting neg-
ative tags at the end has other advantage: it effectively
delays the associated operations, which should result
in more efficient programs. Since our disambiguation
algorithm ignores start tags, we can use the same
comparison algorithm for all subhistories. Alterna-

tively one can compare non-orbit tags using simple
maximization/minimization strategy: if both last off-
sets of the given tag belong to the ε-closure, they are
equal; if only one of them belongs to the ε-closure, it
must be greater than the other one; otherwise the re-
sult of comparison on the previous step should be used.

Orders are represented with vectors of ordinal numbers
(one per tag) assigned to each configuration. Ordinals
are initialized to zero and updated on each step of sim-
ulation by comparing last subhistories. Subhistories
are compared using ordinals from the previous step
and T-string fragments added by the ε-closure. Ordi-
nals are assigned in decreasing order, so that they can
be compared like offsets: greater values have higher
priority.

ordinals({(qi, oi, xi)}ni=1)

for t=1, N do
for i=1, n do

A1 . . . Am←ε history(xi, t)
Bi←Am
if m=1 then Bi←oi(t)Bi

{(pi, Ci)}← sort {(i, Bi)} by second
component using inverted ≺subhistory
let op1(t)=0, ord←0

for i=2, n do
if Ci−1 6=Ci then ord←ord+1
let opi(t)=ord

return {(qi, oi, xi)}ni=1

The history algorithm is modified to handle T-string
fragments added by the ε-closure: non-∅ offsets are
set to ∞, as all tags in the ε-closure have the same
offset which is greater than any ordinal calculated on
the previous step.

ε history(a1 . . . an, t)

i←1, j←1
while true do

while i ≤ n and ai 6∈hightags(t) do
if ai= t then Aj←Aj∞
if ai= t then Aj←Aj∅
i← i+1

if i>n then break
j←j+1

while i ≤ n and ai 6∈{t, t} do
i← i+1

return A1 . . . Aj

Disambiguation is defined as comparison of pairs
(ox, x) and (oy, y), where ox, oy are ordinals and
x, y are the added T-string fragments:

14

≺POSIX ((ox, x), (oy, y))

for t=1, N do
A1 . . . An←ε history(x, 2t), a←ox(2t)
B1 . . . Bn←ε history(y, 2t), b←oy(2t)
A1←aA1

B1←bB1

for i=1, n do
if Ai 6=Bi then return Ai ≺subhistory Bi

return false

So far we have treated all subexpressions uniformly as
if they were marked for submatch extraction. In prac-
tice most of them are not: we can reduce the amount
of tags by dropping all tags in subexpressions with-
out nested submatches (since no other tags depend on
them). However, all the hierarchy of tags from the top-
most subexpression down to each submatch must be
preserved, including fictive tags that don’t correspond
to any submatch and exist purely for disambiguation
purposes. They are probably not many: POSIX RE
use the same operator for grouping and submatching,
and compound expressions usually need grouping to
override operator precedence, so it is uncommon to
construct a large RE without submatches. However,
fictive tags must be inserted into RE; neither Laurikari
nor Kuklewicz mention it, but both their libraries seem
to do it (judging by the source code).

In this respect TDFA-based matchers have an advan-
tage over TNFA-based ones: disambiguation happens
at determinization time, and afterwards we can erase
all fictive tags – the resulting TDFA will have no over-
head. However, if it is necessary to reduce the amount
of tags at all costs (even at disambiguation time), then
fictive tags can be dropped and the algorithm modi-
fied as follows. Each submatch should have two tags
(start and end) and repeated submatches should also
have a third (orbit) tag. Start and end tags should be
maximized, if both conflicting subhistories are non-∅;
otherwise, if only one is ∅, leftmost path should be
taken; if both are ∅, disambiguation should continue
with the next tag. Orbit tags obey the same rules as
before. The added complexity is caused by the possible
absence of tags in the left part of union and concatena-
tion. We won’t go into further details, as the modified
algorithm is probably not very useful; but an exper-
imental implementation in RE2C passed all relevant
tests in [Fow03]. Correctness proof might be based on
the limitations of POSIX RE due to the coupling of
groups and submatches.

6 Determinization

When discussing TNFA simulation we paid little atten-
tion to tag value functions: decomposition must wait
until disambiguation, which is defined on T-strings,

and in general this means waiting until the very end
of simulation. However, since then we have studied
leftmost greedy and POSIX policies more closely and
established that both are prefix-based and foldable.
This makes them suitable for determinization, but
also opens possibilities for more efficient simulation.
In particular, there’s no need to remember the whole
T-string for each active path: we only need ordinals
and the most recent fragment added by the ε-closure.
All the rest can be immediately decomposed into tag
value function. Consequently, we extend configura-
tions with vectors of tag values: in general, each value
is an offset list of arbitrary length, but in practice
values may be single offsets or anything else.

Laurikari determinization algorithm has the same ba-
sic principle as the usual powerset construction (see
e.g. [HU90], Theorem 2.1 on page 22): simulation
of nondeterministic automaton on all possible inputs
combined with merging of equivalent states. The most
tricky part is merging: extended configuration sets are
no longer equal, as they contain absolute tag values.
In section 5 we solved similar problem with respect to
disambiguation by moving from absolute T-strings to
relative ordinals. However, this wouldn’t work with
tag values, as we need the exact offsets. Laurikari re-
solved this predicament using references: he noticed
that we can represent tag values as cells in “memory”
and address each value by reference to the cell that
holds it. If states X and Y are equal up to renaming
of references, then we can convert X to Y by copying
the contents of cells in X to the cells in Y . The num-
ber of different cells needed at each step is finite: it is
bounded by the number of tags times the number of
configurations in the given state. Therefore “memory”
can be modeled as a finite set of registers, which brings
us to the following definition of TDFA:

Definition 26. Tagged Deterministic Finite Automa-
ton (TDFA) is a structure (Σ, T,Q,F, Q0, R, δ, ζ, η, ι),
where:

Σ is a finite set of symbols (alphabet)

T is a finite set of tags

Q is a finite set of states

F ⊆ Q is the set of final states

Q0 ∈ Q is the initial state

R is a finite set of registers

δ : Q× Σ→ Q is the transition function

ζ : Q× Σ×R→ R× B∗
is the register update function

η : F×R→ R× B∗
is the register finalize function

ι : R→ R× B∗

15

is the register initialize function
where B is the boolean set {0, 1}. �

Operations on registers are associated with transi-
tions, final states and start state, and have the form
r1 =r2b1 . . . bn, where b1 . . . bn are booleans 1, 0 denot-
ing current position and default value. For example,
r1 = 0 means “set r1 to default value”, r1 = r2 means
“copy r2 to r1” and r1 = r111 means “append current
position to r1 twice”.

TDFA definition looks very similar to the definition
of deterministic streaming string transducer (DSST),
described by Alur and Černý in [AC11]. Indeed, the
two kinds of automata are similar and have similar ap-
plications: DSSTs are used for RE parsing in [Gra15].
However, their semantics is different: TDFA operates
on tag values, while DSST operates on strings of the
output language. What is more important, DSST is
copyless: its registers can be only moved, not copied.
TDFA violates this restriction, but this doesn’t affect
its performance as long as registers hold scalar values.
Fortunately, as we shall see, it is always possible to
represent tag values as scalars.

TDFA can be constructed in two slightly different ways
depending on whether we associate ε-closure of each
state with the incoming transition, or with all outgo-
ing transitions. For the usual powerset construction it
makes no difference, but things change in the presence
of tagged transitions. In the former case register oper-
ations are associated with the incoming transition and
should be executed after it. In the latter case they
belong to each outgoing transition and should be ex-
ecuted before it, which means that we can exploit the
lookahead symbol to filter out only the relevant part
of ε-closure: pick only those ε-paths which end states
have transitions on the lookahead symbol. This leaves
out many useless register operations: intuitively, we
delay their application until the right lookahead sym-
bol shows up. However, state mapping becomes more
complex: since the operations are delayed, their effect
on each state is not reflected in configurations at the
time of mapping. In order to ensure state equivalence
we must additionally demand exact coincidence of de-
layed operations.

The two ways of constructing TDFA resemble slightly
of LR(0) and LR(1) automata; we call them TDFA(0)
and TDFA(1). Indeed, we can define conflict as a situ-
ation when tag has at least two different values in the
given state. Tags that induce no conflicts are determin-
istic; the maximal number of different values per state
is the tag’s degree of nondeterminism. Accordingly,
tag-deterministic RE are those for which it is possible
to build TDFA without conflicts (also called one-pass
in [Cox10]). As with LR(0) and LR(1), many RE are

tag-deterministic with respect to TDFA(1), but not
TDFA(0). Unlike LR automata, TDFA with conflicts
are correct, but they can be very inefficient: the higher
tag’s degree of nondeterminism, the more registers it
takes to hold its values, and the more operations are
required to manage these registers. Deterministic tags
need only a single register and can be implemented
without copy operations.

Laurikari used TDFA(0); we study both methods and
argue that TDFA(1) is better. Determinization algo-
rithm is defined on Figure 7; it handles both types of
automata in a uniform way. States are sets of config-
urations (q, v, o, x), where q is a core TNFA state, v
is a vector of registers that hold tag values, o is the
ordinal and x is the T-string of the ε-path by which
q was reached. The last component, x, is used only
by TDFA(1), as it needs to check coincidence of de-
layed register operations; for TDFA(0) it is always ε.
During construction of ε-closure configurations are ex-
tended to the form (q, v, o, x, y), where y is the new
T-string: TDFA(0) immediately applies it to tag val-
ues, but TDFA(1) applies x and delays y until the next
step. Registers are allocated for all new operations: the
same register may be used on multiple outgoing transi-
tions for operations of the same tag, but different tags
never share registers. We assume an infinite number
of vacant registers and allocate them freely, not trying
to reuse old ones; this results in a more optimization-
friendly automaton. Note also that the same set of
final registers is reused by all final states: this simpli-
fies tracking of final tag values. Mapping of a newly
constructed state X to an existing state Y checks co-
incidence of TNFA states, orders, delayed operations,
and constructs bijection between registers of X and Y .
If r1 in X corresponds to r2 in Y (and they are not
equal), then r1 must be copied to r2 on the transition
to X (which will become transition to Y after merg-
ing). It may happen so that r1 itself is a left-hand
side of an operation on this transition: in this case we
simply substitute it with r2 instead of copying. De-
terminization algorithm can handle both POSIX and
leftmost greedy policies, but in the latter case it can
be simplified to avoid explicit calculation of ordinals,
as discussed in section 5.

Theorem 1. Determinization algorithm terminates.

Proof. The proof is very similar to the one given by
Laurikari in [Lau00]: we will show that for arbitrary
TNFA with t tags and n states the number of unmap-
pable TDFA states is finite. Each TDFA state with
m configurations (where m ≤ n) is a combination of
the following components: a set of m TNFA states, t
m-vectors of registers, k m-vectors of ordinals (k = 1
for leftmost greedy policy and k= t for POSIX policy),
and an m-vector of T-strings. Consider each compo-
nent in turn. First, a set of TNFA states: the number

16

determinization(N =(Σ, T,Q, F, q0, T,∆), `)

/* initialization */

let initord(t)=0
let initreg(t)= t
let finreg(t)= t+ |T |
let maxreg=2|T |
let newreg ≡ undefined

/* initial closure and reg-init function */

(Q0, regops,maxreg, newreg)←closure(N , `,
{(q0, initreg, initord, ε)},maxreg, newreg)

let Q={Q0}, F=∅
foreach (r1, r2, h)∈regops do

let ι(r1)=(r2, h)

/* main loop */

while exists unmarked state X∈Q do
mark X

/* explore all outgoing transitions */

let newreg ≡ undefined
foreach symbol α ∈ Σ do

Y ←reach′(∆, X, α)
(Z, regops,maxreg, newreg)←

closure(N , `, Y,maxreg, newreg)

/* try to find mappable state */

if exists Z ′∈Q for which regops′=
map(Z ′, Z, T, regops) 6= undefined, then

(Z, regops)←(Z ′, regops′)
else add Z to Q
/* transition and reg-update functions */

let δ(X,α)=Z
foreach (r1, r2, h)∈regops do

let ζ(X,α, r1)=(r2, h)

/* final state and reg-finalize function */

if exists (q, v, o, x)∈X | q∈F then
add X to F
foreach tag t∈T do

let η(X, finreg(t))=(v(t), op(x, t))

let R={1, . . . ,maxreg}
return (Σ, T,Q,F, Q0, R, δ, ζ, η, ι)

op(x, t)

switch x do
case ε return ε

case ty return 0 · op(y, t)
case ty return 1 · op(y, t)
case ay return op(y, t)

closure(N , lookahead,X,maxreg, newreg)

/* construct closure and update ordinals */

Y ←{(q, o, ε) | (q, v, o, x)∈X}
Y ←closure′(Y, F,∆)
Y ←ordinals(Y)
Z←{(q, v, õ, x, y) | (q, v, o, x)∈X ∧ (q, õ, y)∈Y }
/* if TDFA(0), apply lookahead operations */

if not lookahead then
Z←{(q, v, o, y, ε) | (q, v, o, x, y)∈Z}

/* find all distinct operation right-hand sides */

let newops=∅
foreach configuration (q, v, o, x, y)∈Z do

foreach tag t∈T do
h←op(x, t)
if h 6=ε then add (t, v(t), h) to newops

/* allocate registers for new operations */

foreach o∈newops do
if newreg(o)= undefined then

maxreg←maxreg + 1
let newreg(o)=maxreg

/* update registers in closure */

foreach configuration (q, v, o, x, y)∈Z do
foreach tag t∈T do

h←op(x, t)
if h 6=ε then let v(t)=newreg(t, v(t), h)

X←{(q, v, o, y) | (q, v, o, x, y)∈Z}
regops←{(newreg(o), r, h)|o=(t, r, h)∈newops}
return (X, regops,maxreg, newreg)

map(X,Y, T, ops)

let xregs(t)={v(t) | (q, v, o, x)∈X}
let yregs(t)={v(t) | (q, v, o, x)∈Y }
/* map one state to the other so that the

corresponding configurations have equal TNFA

states, ordinals and lookahead operations, and

there is bijection between registers */

if exists bijection M : X ↔ Y , and ∀t∈T exists
bijection m(t) : xregs(x)↔ yregs(t), such that
∀((q, v, o, x), (q̃, ṽ, õ, x̃))∈M : q= q̃ and o= õ and
∀t∈T : op(x, t)=op(x̃, t) and (v(t), ṽ(t))∈m(t),
then

let m=
⋃
t∈T m(t)

/* fix target register in existing operations */

ops1←{(a, c, h) | (a, b)∈m ∧ (b, c, h)∈ops}
/* add copy operations */

ops2←{(a, b, ε) | (a, b)∈m ∧ a 6=b
∧ @c, h : (b, c, h)∈ops}

return ops1 ∪ ops2

else return undefined

Figure 7: Determinization algorithm.
Functions reach′ and closure′ are exactly as reach from section 3 and closure goldberg radzik from section 4,

except for the trivial adjustments to carry around ordinals and pass them into disambiguation procedure.

17

of different subsets of n states is finite. Second, a vec-
tor of registers: we assume an infinite number of reg-
isters during determinization, but there is only a finite
number of m-element vectors different up to bijection.
Third, a vector of ordinals: the number of different
weak orderings of m elements is finite. Finally, a vec-
tor of T-strings: each T-string is induced by an ε-path
without loops, therefore its length is bounded by the
number of TNFA states, and the number of different
T-strings of length n over finite alphabet of t tags is
finite. �

Now let’s see the difference between TDFA(0) and
TDFA(1) on a series of small examples. Each example
is illustrated with five pictures: TNFA and both kinds
of TDFA, each in two forms: expanded and compact.
Expanded form shows the process of determinization.
TDFA states under construction are shown as tables,
where rows are configurations: the first column is
TNFA state, subsequent columns are registers used for
each tag. TDFA(1) may have additional columns for
lookahead operations; for TDFA(0) they are reflected
in register versions. Ordinals are omitted for brevity:
in case of leftmost greedy policy they coincide with

row indices. Dotted states and transitions illustrate
the process of mapping: each dotted state has a transi-
tion to solid state (labeled with reordering operations).
Initializer and finalizers are also dotted; final register
versions are shown in parentheses. Discarded ambigu-
ous paths (if any) are shown in light gray. Compact
form shows the resulting TDFA. Alphabet symbols on
TNFA transitions are shown as ASCII codes. TDFA
transitions are labeled with numbers instead of sym-
bols: each number represents a class of symbols (in all
the examples below number 1 corresponds to symbol a
and number 2 to symbol b). Operations are separated
by forward slash “/” and take two forms: normal form
r1 = r2b1 . . . bn and short form rb, which means “set
r to b”. Symbols ↑ and ↓ are used instead of 1 and
0 to denote current position and default value. All
graphs in this section are autogenerated with RE2C,
so they reflect exactly the constructed automata. By
default we use leftmost greedy disambiguation, as it
allows to study standalone tags and generate smaller
pictures. Note that the resulting automata are not yet
optimized and use more registers than necessary.

Example 1. a∗1b∗ (the TRE mentioned in the introduction).
(a) — TNFA, (b) — construction of TDFA(0), (c) — TDFA(0), (d) — construction of TDFA(1), (e) — TDFA(1).

This example is very simple, but it shows an important use case: finding the edge between two non-overlapping
components of the input string. As the pictures show, TDFA(0) behaves much worse than TDFA(1): it pulls the
operation inside of loop and repeatedly rewrites tag value on each iteration, while TDFA(1) saves it only once,
when the lookahead symbol changes from a to b. TRE is deterministic with respect to TDFA(1) and has 2nd

degree of nondeterminism with respect to TDFA(0) (as there are at most two different registers used in each state).

18

Example 2. a∗1a∗a (the TRE used by Laurikari to explain his algorithm).
(a) — TNFA, (b) — construction of TDFA(0), (c) — TDFA(0), (d) — construction of TDFA(1), (e) — TDFA(1).
This TRE has a modest degree of nondeterminism: 2 for TDFA(1) and 3 for TDFA(0). Compare (c) with figure 3

from [Lau00]: it is the same automaton up to a minor notational difference (in this case leftmost greedy policy
agrees with POSIX).

Example 3. (1a)∗ .
(a) — TNFA, (b) — construction of TDFA(0), (c) — TDFA(0), (d) — construction of TDFA(1), (e) — TDFA(1).
This example shows the typical difference between automata: TDFA(0) has less states, but more operations; its
operations are more clustered and interrelated. Both automata record the full history of tag on all iterations.

TRE has 2nd degree nondeterminism for TDFA(0) and is deterministic for TDFA(1).

19

Example 4. (1a+2b+)+ .
(a) — TNFA, (b) — construction of TDFA(0), (c) — TDFA(0), (d) — construction of TDFA(1), (e) — TDFA(1).

Like Example 1, this example shows that TDFA(0) tends to pull operations inside of loops and behaves much
worse than hypothetical hand-written code (only this example is bigger and gives an idea how the difference

between automata changes with TRE size). If a+ and b+ match multiple iterations (which is likely in practice for
TRE of such form), then the difference is considerable. Both tags have 2nd degree of nondeterminism for

TDFA(0), and both are deterministic for TDFA(1).

20

Example 5. a∗1a3 .
(a) — TNFA, (b) — construction of TDFA(0), (c) — TDFA(0), (d) — construction of TDFA(1), (e) — TDFA(1).
This example demonstrates a pathological case for both types of automata: nondeterminism degree grows linearly
with the number of repetitions. As a result, for n repetitions both automata contain O(n) states and O(n) copy
operations inside of a loop. TDFA(0) has one more operation than TDFA(1), but for n>2 this probably makes

little difference. Obviously, for TRE of such kind both methods are impractical. However, bounded repetition is a
problem on its own, even without tags; relatively small repetition numbers dramatically increase the size of
automaton. If bounded repetition is necessary, more powerful methods should be used: e.g. automata with

counters described in [Bec09] (chapter 5.1.12).

21

Example 6. 1(3(a|aa)4)∗2, corresponding to POSIX RE (a|aa)+.
(a) — TNFA, (b) — construction of TDFA(0), (c) — TDFA(0), (d) — construction of TDFA(1), (e) — TDFA(1).
This example uses POSIX disambiguation. An early optimization in RE2C rewrites TRE to 1(3(a|aa))∗4 2: orbit
tag 4 is moved out of loop, as we need only its last offset (disambiguation is based on maximization of tag 3: as
argued in section 5, checking both tags is redundant). The resulting automata oscillate between two final states:

submatch result depends on the parity of symbol count in the input string. Tag 3 has maximal degree of
nondeterminism: 3 for TDFA(0) and 2 for TDFA(1). Tags 2 and 4 are deterministic for TDFA(1) and have degree

2 for TDFA(0). Tag 1 is deterministic for both automata.

From these examples we can draw the following con-
clusions. First, TDFA(1) is generally better than
TDFA(0): delaying register operations allows to get
rid of many conflicts. Second, both kinds of automata
are only suitable for RE with modest levels of ambi-
guity and low submatch detalisation: TDFA can be

applied to full parsing, but other methods would prob-
ably outperform them. However, RE of such form are
very common in practice and for them TDFA can be
very efficient.

22

7 Implementation

In this section we discuss some practical details that
should be taken into account when implementing the
above algorithm. The proposed way of doing things
is neither general, nor necessarily the best; it simply
reflects RE2C implementation.

Register reuse

There are many possible ways to allocate registers
during TDFA construction. One reasonable way (used
by Laurikari) is to pick the first register not already
used in the given state: since the number of simulta-
neously used registers is limited, it is likely that some
of the old ones are not occupied and can be reused.
We use a different strategy: allocate a new register
for each distinct operation of each tag on all outgoing
transitions from the given state. It results in a more
optimization-friendly automaton which has a lot of
short-lived registers with independent lifetimes. Con-
sequently, there is less interference between different
registers and more registers can be merged. The result-
ing program form is similar to static single assignment
form [SSA], though not exactly SSA: we cannot use
efficient SSA-specific algorithms. However, SSA con-
struction and deconstruction is rather complex and its
usefulness on our (rather simple) programs is not so
evident.

It may happen that multiple outgoing transitions from
the same state have register operations with identi-
cal right-hand sides. If these operations are induced
by the same tag, then one register is allocated for
all such transitions. If, however, operations are in-
duced by different tags, they do not share registers.
But why use different registers, if we know that the
same value is written to both of them? The reason
for this is the way we do mapping: if different tags
were allowed to share registers, it would result in a
plenty of “too specialized” states that do not map to
each other. For example, TDFA for TRE of the form
(1|α1)(2|α2) . . . (n|αn) would have exponentially many
unmappable final states corresponding to various per-
mutations of default value and current position.

Fallback registers

So far we have avoided one small, yet important com-
plication. Suppose that TRE matches two strings, such
that one is a proper prefix of the other: α1 . . . αn and
α1 . . . αnβ1 . . . βm, and the difference between them is
more than one character: m > 1. Consider automa-
ton behavior on input string α1 . . . αnβ1: it will con-
sume all characters up to αn and arrive at the final
state. Then, however, it will continue matching: since
the next character is β1, it may be possible to match

longer string. At the next step it will see mismatch and
stop. At that point automaton must backtrack to the
latest final state, restoring input position and all rele-
vant registers that might have been overwritten. TRE
(a1bc)+ exhibits this problem for both TDFA(0) and
TDFA(1) (labels 1, 2 and 3 on transitions correspond
to symbols a, b and c):

Figure 8: TDFA(0) for (a1bc)+.

Figure 9: TDFA(1) for (a1bc)+.

Consider execution of TDFA(0) on input string abca:
after matching abc in state 3 it will consume a and
transition to state 1, overwriting register 3; then it
will fail to match b and backtrack. Likewise, TDFA(1)
will backtrack on input string abcab. Clearly, we must
backup register 3 when leaving state 3.

We call registers that need backup fallback registers.
Note that not all TRE with overlaps have fallback reg-
isters: it may be that the longer match is unconditional
(always matches), or no registers are overwritten be-
tween the two matches, or the overwritten registers are
not used in the final state. In general, fallback regis-
ters can be found by a simple depth-first search from
all final states of TDFA. Each of them needs a backup
register ; all transitions from final state must backup
it, and all fallback transitions must restore it. For the
above example the “repaired” automata look as fol-
lows (register 3 is renamed to 2, register 1 is backup,
fallback transitions are not shown):

Figure 10: TDFA(0) for (a1bc)+ with backup
registers.

23

Figure 11: TDFA(1) for (a1bc)+ with backup
registers.

Note that the total number of backup registers cannot
exceed the number of tags: only the latest final state
needs to be backup-ed, and each final TDFA state has
only one configuration with final TNFA state, and this
configuration has exactly one register per tag. As we
already allocate distinct final register for each tag, and
this register is not used anywhere else in the program,
we can also use it for backup.

Fixed tags

It may happen that two tags in TRE are separated by
a fixed number of characters: each offset of one tag is
equal to the corresponding offset of the other tag plus
some static offset. In this case we can track only one of
the tags; we say that the second tag is fixed on the first
one. For example, in TRE a∗1b2c∗ tag 1 is always one
character behind of tag 2, therefore it is fixed on tag 2
with offset -1. Fixed tags are ubiquitous in TRE that
correspond to POSIX RE, because they contain a lot
of adjacent tags. For example, POSIX RE (a*)(b*)

is represented with TRE 1 3 a∗ 4 5 b∗ 6 2, in which tag
1 is fixed on 3, 4 on 5 and 6 on 2 (additionally, 1 and 3
are always zero and 6, 2 are always equal to the length
of matching string).

Fixity relation is transitive, symmetric and reflexive,
and therefore all tags can be partitioned into fixity
classes. For each class we need to track only one rep-
resentative. Since fixed tags cannot belong to different
alternatives of TRE, it is possible to find all classes
in one traversal of TRE structure by tracking dis-
tance to each tag from the nearest non-fixed tag on
the same branch of TRE. Distance is measured as the
length of all possible strings that match the part of
TRE between two tags: if this length is variable, dis-
tance is infinity and the new tag belongs to a new class.

When optimizing out fixed tags, one should be careful
in two respects. First, negative submatches: if the
value of representative is ∅, then all fixed tags are
also ∅ and their offsets should be ignored. Second,
fixed tags may be used by disambiguation policy: in
this case they should be kept until disambiguation is
finished; then they can be removed from TDFA with
all associated operations.

This optimization is also described in [Lau01], section
4.3.

Simple tags

In practice we often need only the last value of some
tag: either because it is not enclosed in repetition and
only has one value, or because of POSIX policy, or
for any other reason. We call such tags simple; for
them determinization algorithm admits a number of
simplifications that result in smaller automata with
less register operations.

First, the mapping procedure map from section 6 needs
not to check bijection between registers if the looka-
head history is not empty: in this case register values
will be overwritten on the next step (for non-simple
tags registers would be augmented, not overwritten).
Condition (v(t), ṽ(t)) ∈ m(t) in the map algorithm
on Figure 1 can be replaced with a weaker condi-
tion op(x, t) 6= ε ∨ (v(t), ṽ(t)) ∈ m(t), which increases
the probability of successful mapping. This optimiza-
tion applies only to TDFA(1), since lookahead history
is always ε for TDFA(0), so the optimization effec-
tively reduces the gap in the number of states between
TDFA(0) and TDFA(1).

Second, operations on simple tags are reduced from
normal form r1 =r2 ·b1 . . . bn to one of the forms r1 =bn
(set) and r1 = r2 (copy). It has many positive con-
sequences: initialization of registers is not necessary;
register values are less versatile and there are less de-
pendencies between registers, therefore more registers
can be merged; operations can be hoisted out of loops.
What is most important, copy operations are cheap for
simple tags.

Scalar representation of histories

The most naive representation of history is a list of off-
sets; however, copy operations on lists are very ineffi-
cient. Fortunately, a better representation is possible:
as observed by [Kar14], histories form a prefix tree:
each new history is a fork of some old history of the
same tag. Prefix tree can be represented as an array of
nodes (p, o), where p is the index of parent node and
o is the offset. Then each register can hold an index
of some leaf node in the prefix tree, and copy opera-
tions are reduced to simple copying of indices. Append
operations are somewhat more complex: they require
a new slot (or a couple of slots) in the prefix tree;
however, if array is allocated in large chunks of mem-
ory, then the amortized complexity of each operation
is constant. One inconvenience of this representation
is that histories are obtained in reversed form.

24

Relative vs. absolute values

If the input is a string in memory, it might be con-
venient to use pointers instead of offsets (especially
in C, where all operations with memory are defined
in terms of pointers). However, compared to offsets,
pointers have several disadvantages. First, offsets are
usually smaller: often they can be represented with
1-2 bytes, while pointers need 4-8 bytes. Second, off-
sets are portable: unlike pointers, they are not tied
to a particular environment and will not loose their
meaning if we save submatch results to file or write
on a sheet of paper. Even put aside storage, pointers
are sensitive to input buffering: their values are invali-
dated on each buffer refill and need special adjustment.
Nevertheless, RE2C uses pointers as default represen-
tation of tag values: this approach is more direct and
efficient for simple programs. RE2C users can redefine
default representation to whatever they need.

Optimization pipeline

Right after TDFA construction and prior to any fur-
ther optimizations RE2C performs analysis of un-
reachable final states (shadowed by final states that
correspond to longer match). Such states are marked
as non-final and all their registers are marked as dead.

After that RE2C performs analysis of fallback registers
and adds backup operations as necessary.

Then it applies register optimizations; they are aimed
at reducing the number of registers and copy oper-
ations. This is done by the usual means: liveness
analysis, followed by dead code elimination, followed
by interference analysis and finally register allocation
with biased coalescing of registers bound by copy op-
erations. The full cycle is run twice (first iteration is
enough in most cases, but subsequent iterations are
cheap as they run on an already optimized program
and reuse the same infrastructure). Prior to the first
iteration RE2C renames registers so that they occupy
consecutive numbers; this allows to save some space
on liveness and interference tables.

Then RE2C performs TDFA minimization: it is ex-
actly like ordinary DFA minimization, except that
equivalence must take into account register operations:
final states with different finalizers cannot be merged,
as well as transitions with different operations. Thus
it is crucial that minimization is applied after register
optimizations.

Then RE2C examines TDFA states and, if all outgoing
transitions have the same operation, this operation is
hoisted out of transitions into the state itself.

Finally, RE2C converts TDFA to a tunnel automa-
ton [Gro89] that allows to further reduce TDFA size
by merging similar states and deduplicating pieces of
code.

Most of these optimizations are basic and some are
even primitive, yet put all together and in correct or-
der they result in a significant reduction of registers,
operations and TDFA states (see the section 8 for ex-
perimental results).

8 Tests and benchmarks

Correctness

Correctness testing of RE2C was done in several dif-
ferent ways. First, about a hundred of hand-written
tests were added to the main RE2C test suite. These
tests include examples of useful real-world programs
and checks for various optimizations, errors and spe-
cial cases.

Second, RE2C implementation of POSIX captures was
verified on the canonical POSIX test suite composed
by Glenn Fowler [Fow03]. I used the augmented ver-
sion provided by Kuklewicz [Kuk09] and excluded a
few tests that check POSIX-specific extensions which
are not supported by RE2C (e.g. start and end an-
chors ^ and $) — the excluded tests do not contain
any special cases of submatch extraction.

Third, and probably most important, I used the fuzzer
contributed by Sergei Trofimovich (available as a
part of RE2C source code) and based on the Haskell
QuickCheck library [CH11]. Fuzzer generates random
RE with the given constrains and verifies that each
generated RE satisfies certain properties. By redefin-
ing the set of constraints one can control the size and
the form of RE: for example, tweak the probability
of different operations or change the basic character
set. One can tune fuzzer to emit RE with heavy use
of some particular feature, which is often useful when
testing various implementation aspects. Properties,
on the other hand, control the set of tests and checks
that are applied to each RE: by redefining properties
it is possible to chase all sorts of bugs.

While RE were generated at random, each particular
RE was tested extensively on the set of input strings
generated with RE2C --skeleton option. This option
enables RE2C self-validation mode: instead of embed-
ding the generated lexer in used-defined interface code,
RE2C embeds it in a self-contained template program
called skeleton. Additionally, RE2C generates two in-
put files: one with strings derived from the regular
grammar and one with compressed match results that

25

are used to verify skeleton behavior on all inputs. In-
put strings are generated so that they cover all TDFA
transitions and many TDFA paths (including paths
that cause match failure). Data generation happens
right after TDFA construction and prior to any op-
timizations, but the lexer itself is fully optimized (it
is the same lexer that would be generated in normal
mode). Thus skeleton programs are capable of reveal-
ing any errors in optimization and code generation.

Combining skeleton with fuzzer yields a powerful and
generic testing method. I used it to verify the following
properties:

• Correctness of RE2C optimizations: fuzzer found
tens of bugs in the early implementation of tags
in RE2C, including some quite involved and rare
bugs that occurred on later stages of optimiza-
tion and would be hard to find otherwise.

• Coherence of TDFA(0) and TDFA(1): the two
automata result in different programs which
must yield identical results. I ran TDFA(0) pro-
grams on skeleton inputs generated for TDFA(1)
programs and vice versa; it helped to reveal
model-specific bugs.

• Coherence of RE2C and Regex-TDFA (Haskell
RE library written by Kuklewicz that supports
POSIX submatch semantics [Regex-TDFA]). I
ran Regex-TDFA on skeleton input strings gen-
erated by RE2C and compared match results
with those of the skeleton program. Aside from
a couple of minor discrepancies (such as new-
line handling and anchors) I found two bugs in
submatch extraction in Regex-TDFA. Both bugs
were found multiple times on slightly different
RE and inputs, and both are relatively rare (the
faulty RE occurred approximately once in 50 000
tests and it only failed on some specific input
strings). On the bulk of inputs RE2C and Regex-
TDFA are coherent.

First bug can be triggered by RE (((a*)|b)|b)+

and input string ab: Regex-TDFA returns in-
correct submatch result for second capturing
group ((a*)|b) (no match instead of b at off-
set 1). Some alternative variants that also fail:
(((a*)|b)|b){1,2}, ((b|(a*))|b)+.

Second bug can be triggered by RE
((a?)(())*|a)+ and input string aa. Incor-
rect result is for second group (a?) (no match
instead of a at offset 1), third group (()) and
fourth group () (no match instead of empty
match at offset 2). Alternative variant that also
fails: ((a?()?)|a)+.

Tested against Regex-TDFA-1.2.2.

• Numerous assumptions and hypotheses that
arose during this work: fuzzer is a most help-
ful tool to verify or disprove one’s intuition.

I did not compare RE2C against other libraries, such
as [TRE] or [RE2], as none of these libraries support
POSIX submatch semantics: TRE has known bugs
[LTU], and RE2 author explicitly states that POSIX
submatch semantics is not supported [Cox17].

Benchmarks

Benchmarks are aimed at comparison of TDFA(0) and
TDFA(1); comparison of RE2C and other lexer gener-
ators is beyond the scope of this paper (see [BC93]).
As we have already seen on numerous examples in
section 6, TDFA(1) has every reason to result in faster
code; however, only a real-world program can show if
there is any perceivable difference in practice. I used
two canonical use cases for submatch extraction in
RE: URI parser and HTTP parser. Both examples
are used in literature [BT10] [GHRST16], as they are
simple enough to admit regular grammar, but at the
same time both grammars have non-trivial structure
composed of multiple components of varying length
and form [RFC-3986] [RFC-7230]. Each example has
two implementations: RFC-compliant and simplified
(both forms may be useful in practice). The input to
each parser is a 1G file of randomly generated URIs
or HTTP messages; it is buffered in 4K chunks. Pro-
grams are written so that they spend most of the
time on parsing, so that benchmarks measure the ef-
ficiency of parsing, not the accompanying code or the
operating system. For each of the four parsers there
is a corresponding DFA-based recognizer: it sets a
baseline for expectations of how fast and small the
lexer can be and what is the real overhead on sub-
match extraction. Benchmarks are written in C-90
and compiled with [RE2C] version 1.0 and four differ-
ent C compilers: [GCC] version 7.1.10, [Clang] version
4.0.1, [TCC] version 0.9.26 and [PCC] version 1.1.0
with optimization level -O2 (though some compilers
probably ignore it). RE2C was run in three different
settings: default mode, with -b option (generate bit
masks and nested if-s instead of plain switch-es),
and with --no-optimize-tags option (suppress op-
timizations of tag variables described in section 7).
All benchmarks were run on 64-bit Intel Core i3 ma-
chine with 3G RAM and 32K L1d, 32K L1i, 256K L2
and 3072K L3 caches; each result is the average of 4
subsequent runs after a proper warm-up. Benchmark
results are summarized in tables 1 — 4 and visualized
on subsequent plots.

Benchmarks are available as part of RE2C-1.0 distri-
bution in subdirectory re2c/benchmarks.

26

registers states code size (K) stripped binary size (K) run time (s)
gcc clang tcc pcc gcc clang tcc pcc

re2c
TDFA(0) 45 452 250 63 135 339 247 12.86 10.27 99.09 55.83
TDFA(1) 42 457 183 55 139 213 151 6.43 5.59 67.00 27.93

DFA – 414 135 35 111 145 91 4.96 4.46 62.04 23.67

re2c -b
TDFA(0) 45 452 295 63 59 352 267 11.95 10.30 65.47 36.95
TDFA(1) 42 457 171 55 51 144 111 6.01 5.40 15.94 10.53

DFA – 414 123 35 39 75 51 4.71 4.76 10.88 5.61

re2c –no-optimize-tags
TDFA(0) 2054 625 816 275 267 1107 839 14.11 13.25 105.58 59.60
TDFA(1) 149 462 200 63 147 233 167 6.47 5.90 68.43 29.09

Table 1: RFC-7230 compliant HTTP parser.
Total 39 tags: 34 simple and 5 with history. Nondeterminism for TDFA(0): 23 tags with degree 2, 12 tags with
degree 3 and 1 tag with degree 4. Nondeterminism for TDFA(1): 18 tags with degree 2, 2 tags with degree 3.

registers states code size (K) stripped binary size (K) run time (s)
gcc clang tcc pcc gcc clang tcc pcc

re2c
TDFA(0) 18 70 32 15 31 41 31 7.66 5.47 71.60 33.90
TDFA(1) 16 73 33 15 35 41 31 5.30 3.83 63.30 26.74

DFA – 69 25 15 31 31 23 4.90 3.34 62.00 23.59

re2c -b
TDFA(0) 18 70 31 15 19 31 31 7.12 7.30 31.81 17.44
TDFA(1) 16 73 29 15 19 29 27 5.24 4.43 13.50 8.84

DFA – 69 19 11 15 15 15 4.64 3.94 11.00 5.77

re2c –no-optimize-tags
TDFA(0) 72 106 57 23 55 73 55 8.61 6.77 72.96 34.63
TDFA(1) 44 82 39 19 43 49 39 6.00 5.39 63.79 27.37

Table 2: Simplified HTTP parser.
Total 15 tags: 12 simple and 3 with history. Nondeterminism for TDFA(0): 8 tags with degree 2. Nondeterminism

for TDFA(1): 3 tags with degree 2.

registers states code size (K) stripped binary size (K) run time (s)
gcc clang tcc pcc gcc clang tcc pcc

re2c
TDFA(0) 23 252 152 39 75 203 155 10.01 6.01 111.76 73.75
TDFA(1) 20 256 115 35 75 138 103 6.78 3.23 104.36 51.00

DFA – 198 67 23 55 73 55 7.06 3.19 97.87 51.37

re2c -b
TDFA(0) 23 252 165 39 35 181 151 8.36 8.58 39.51 31.81
TDFA(1) 20 256 127 55 31 130 107 5.21 4.81 12.02 10.01

DFA – 198 60 19 23 39 35 4.04 4.06 9.13 8.17

re2c –no-optimize-tags
TDFA(0) 611 280 426 127 151 536 463 10.39 7.51 127.35 75.23
TDFA(1) 64 256 131 43 87 156 123 6.74 3.54 103.91 51.08

Table 3: RFC-3986 compliant URI parser.
Total 20 tags (all simple). Nondeterminism for TDFA(0): 15 tags with degree 2 and 4 tags with degree 3.

Nondeterminism for TDFA(1): 10 tags with degree 2.

27

registers states code size (K) stripped binary size (K) run time (s)
gcc clang tcc pcc gcc clang tcc pcc

re2c
TDFA(0) 16 26 17 11 19 23 19 8.34 3.55 102.72 59.84
TDFA(1) 13 28 19 11 19 25 23 6.04 3.12 100.28 47.85

DFA – 22 10 11 15 14 15 5.89 2.66 97.95 47.01

re2c -b
TDFA(0) 16 26 20 11 11 22 23 7.14 6.67 23.19 18.73
TDFA(1) 13 28 17 11 11 19 19 4.02 3.08 8.56 6.90

DFA – 22 7 11 11 8 11 3.90 2.52 8.00 4.40

re2c –no-optimize-tags
TDFA(0) 79 29 33 19 23 43 39 7.43 4.05 105.06 61.74
TDFA(1) 40 31 28 15 23 36 31 6.27 3.32 101.79 48.15

Table 4: Simplified URI parser.
Total 14 tags (all simple). Nondeterminism for TDFA(0): 8 tags with degree 2 and 5 tags with degree 3.

Nondeterminism for TDFA(1): 7 tags with degree 2.

Figure 12: Binary size for GCC, Clang, TCC and PCC.

28

Figure 13: Run time for GCC, Clang, TCC and PCC.

Benchmark results show the following:

• Speed and size of the generated code vary be-
tween different compilers: as expected, TCC and
PCC generate slower and larger code than GCC
and Clang (though PCC performs notably bet-
ter); but even GCC and Clang, which are both
known for their optimizations, generate very dif-
ferent code: GCC binaries are often 2x smaller,
while the corresponding Clang-generated code
runs up to 2x faster.

• RE2C code-generation option -b has significant
impact on the resulting code: it results in up to
5x speedup for TCC, 2x speedup for PCC and
about 2x reduction of binary size for Clang at
the cost of about 1.5x slowdown; of all compilers
only GCC seems to be unaffected by this option.

• Regardless of different compilers and options,
TDFA(1) is consistently more efficient than
TDFA(0): the resulting code is about 1.5 - 2x
faster and generally smaller, especially on large
programs and in the presence of tags with his-

tory.

• TDFA(1) incurs modest overhead on submatch
extraction compared to DFA-based recogni-
tion; in particular, the gap between DFA and
TDFA(0) is smaller than the gap between
TDFA(0) and TDFA(1).

• Nondeterminism levels are not so high in the ex-
ample programs.

• RE2C optimizations of tag variables reduce bi-
nary size, even with optimizing C compilers.

• RE2C optimizations of tag variables have less
effect on execution time: usually they reduce it,
but not by much.

9 Conclusions

TDFA(1) is a practical method for submatch extrac-
tion in lexer generators that optimize for speed of the
generated code. It incurs a modest overhead com-

29

pared to simple recognition, and the overhead depends
on detalization of submatch (in many cases it is pro-
portional to the number of tags). One exception is
the case of ambiguous submatch in the presence of
bounded repetition: it causes high degree of nonde-
terminism for the corresponding tags and renders the
method impractical compared to hand-written code.

TDFA(1) method is considerably more efficient than
TDFA(0) method, both theoretically and practically.
Experimental results show that TDFA(1) achieves 1.5x
– 2x speedup compared to TDFA(0) and in most cases
it results in smaller binary size.

TDFA method is capable of extracting repeated sub-
matches, and therefore it is applicable to full parsing.
Efficiency of the generated parsers depends on the data
structures used to hold and manipulate repeated sub-
match values (an efficient implementation is possible).

TDFA can be used in combination with various disam-
biguation policies; in particular, leftmost greedy and
POSIX policies.

10 Future work

The most interesting subject that needs further ex-
ploration and experiments is the comparison of TDFA
(described in this paper) and DSST (described in
[Gra15] and [GHRST16]) on practical problems of
submatch extraction. Both models are aimed at gen-
erating fast parsers, and both depend heavily on the
efficiency of particular implementation. For instance,
DSST is applied to full parsing, which suggests that it
has some overhead on submatch extraction compared
to TDFA; however, optimizations of the resulting pro-
gram may reduce the overhead, as shown in [Gra15].
On the other hand, TDFA allows copy operations on
registers, contrary to DSST; but in practice copy op-
erations are cheap if the registers hold scalar values, as
shown in section 7. The author’s expectation is that

on RE of modest size and submatch complexity op-
timized implementations of TDFA and DSST should
result in very similar code. The construction of DSST
given in [Gra15] works only for leftmost greedy disam-
biguation; it might be interesting to construct DSST
with POSIX disambiguation.

Extending TDFA lookahead to more than one sym-
bol (in other words, extending TDFA to multi-stride
automata described in [Bec09]) is an interesting the-
oretical experiment, but probably not very useful in
practice. As in the case of LR(k) methods for k > 1,
TDFA(k) would pobably be much larger and yet in-
sufficiently expressive to resolve all conflicts.

A more practical subject is combining TDFA and the
counting automata described in [Bec09]: it would solve
the problem of tag nondeterminism in the presence of
bounded repetition.

It would be interesting to implement more involved
analysis and optimizations in RE2C, as it has stronger
guarantees and deeper knowledge of the program than
the C compiler.

Acknowledgments

This study would not be possible without the help of
Sergei Trofimovich. His relentless work on open source
projects and his ability to track down and fix the hard-
est bugs are my highest ideal of a programmer. If it
were not for him, I would not even know about RE2C.

All that I understand in mathematics I owe to my par-
ents Vladimir Fokanov and Elina Fokanova, my school
teacher Tatyana Leonidovna Ilyushenko and the Be-
larusian State University [BSU].

And many thanks to all the good people who cheered
me up during this work. :)

30

References

[AC11] Rajeev Alur and Pavol Černỳ. Streaming transducers for algorithmic verification of single-pass list-
processing programs. In ACM SIGPLAN Notices, volume 46, pages 599–610. ACM, 2011.

[BC93] Peter Bumbulis and Donald D Cowan. RE2C: A more versatile scanner generator. ACM Letters on
Programming Languages and Systems (LOPLAS), 2(1-4):70–84, 1993.

[BSU] Belarusian State University. URL: http://bsu.by/.

[BT10] Claus Brabrand and Jakob G Thomsen. Typed and unambiguous pattern matching on strings using
regular expressions. In Proceedings of the 12th international ACM SIGPLAN symposium on Principles
and practice of declarative programming, pages 243–254. ACM, 2010.

[Bec09] Michela Becchi. Data structures, algorithms and architectures for efficient regular expression evaluation.
PhD thesis, Washington University In St. Louis, School of Engineering and Applied Science, Department
of Computer Science and Engineering, 2009.

[Ber13] Jean Berstel. Transductions and context-free languages. Springer-Verlag, 2013.

[CGR96] Boris V Cherkassky, Andrew V Goldberg, and Tomasz Radzik. Shortest paths algorithms: Theory and
experimental evaluation. Mathematical programming, 73(2):129–174, 1996.

[CH11] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell programs.
Acm sigplan notices, 46(4):53–64, 2011.

[Clang] Clang: a C language family frontend for LLVM. URL: http://clang.llvm.org/.

[Cor09] Thomas H Cormen. Introduction to algorithms. MIT press, 3rd edition, 2009.

[Cox10] Russ Cox. Regular expression matching in the wild. URL: http://swtch.com/~rsc/regexp/regexp3.
html, 2010.

[Cox17] Russ Cox. Comments on RE2 bug tracker. URL: http://github.com/google/re2/issues/146, 2017.

[Fow03] Glenn Fowler. An Interpretation of the POSIX Regex Standard. URL: https://web.archive.org/web/
20050408073627/http://www.research.att.com/~gsf/testregex/re-interpretation.html, 2003.

[GCC] GCC, the GNU Compiler Collection.

[GHRST16] Bjørn Bugge Grathwohl, Fritz Henglein, Ulrik Terp Rasmussen, Kristoffer Aalund Søholm, and Se-
bastian Paaske Tørholm. Kleenex: Compiling nondeterministic transducers to deterministic streaming
transducers. ACM SIGPLAN Notices, 51(1):284–297, 2016.

[GR93] Andrew V Goldberg and Tomasz Radzik. A heuristic improvement of the Bellman-Ford algorithm.
Applied Mathematics Letters, 6(3):3–6, 1993.

[Gra15] Niels Bjørn Bugge Grathwohl. Parsing with Regular Expressions & Extensions to Kleene Algebra. PhD
thesis, DIKU, University of Copenhagen, 2015.

[Gro89] Josef Grosch. Efficient generation of table-driven scanners. Software Practice and Experience 19, pages
1089–1103, 1989.

[HU90] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Languages, And Compu-
tation. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA c©1990, 1st edition, 1990.

[Kar14] Aaron Karper. Efficient regular expressions that produce parse trees. epubli GmbH, 2014.

[Kle51] Stephen Cole Kleene. Representation of events in nerve nets and finite automata. Technical report,
RAND Project US Air Force, 1951.

[Kle56] Stephen Cole Kleene. Representation of events in nerve nets and finite automata. In: Shannon, C.E.,
McCarthy, J. (eds.) Automata Studies, page 3–41, 1956.

31

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Informa-
tion and computation, 110(2):366–390, 1994.

[Kuk07] Chris Kuklewicz. Regular expressions/bounded space proposal. URL: http://wiki.haskell.org/

index.php?title=Regular_expressions/Bounded_space_proposal&oldid=11475, alternative URL:
https://web.archive.org/web/20170808092516/https://wiki.haskell.org/index.php?title=

Regular_expressions/Bounded_space_proposal&oldid=11475, 2007.

[Kuk09] Chris Kuklewicz. Regex-posix-unittest: unit tests for the plaform’s POSIX regex library. URL: http:
//hackage.haskell.org/package/regex-posix-unittest-1.1, 2009.

[LTU] Lambda The Ultimate: comments on thread “regular expression matching can be simple and fast”.
URL: http://lambda-the-ultimate.org/node/2064, alternative URL: http://web.archive.org/

web/20170808091628/http://lambda-the-ultimate.org/node/2064, 2007.

[Lau00] Ville Laurikari. NFAs with tagged transitions, their conversion to deterministic automata and applica-
tion to regular expressions. In String Processing and Information Retrieval, 2000. SPIRE 2000. Pro-
ceedings. Seventh International Symposium on, pages 181–187. IEEE, 2000. URL: http://laurikari.
net/ville/spire2000-tnfa.pdf.

[Lau01] Ville Laurikari. Efficient submatch addressing for regular expressions. Helsinki University of Technology,
2001. URL: http://laurikari.net/ville/regex-submatch.pdf.

[NPX99] Maddalena Nonato, Stefano Pallottino, and Bao Xuewen. SPT L shortest path algorithms: review, new
proposals and some experimental results, 1999.

[PCC] PCC, the Portable C Compiler. URL: http://pcc.ludd.ltu.se/.

[POSIX] The IEEE and The Open Group. POSIX-1.2008 a.k.a. IEEE Std 1003.1-2008 a.k.a The Open Group
Technical Standard Base Specifications, Issue 7, 2016 edition, 2001-2016.

[RE2] RE2: regular expression library. URL: http://github.com/google/re2.

[RE2C] RE2C: lexer generator for C. URL: http://re2c.org, URL: http://github.com/skvadrik/re2c.

[RFC-3986] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource Identifier (URI): Generic
Syntax. Internet Engineering Task Force (IETF), 2005. URL: http://tools.ietf.org/html/rfc3986.

[RFC-7230] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Rout-
ing. Internet Engineering Task Force (IETF), 2014. URL: http://tools.ietf.org/html/rfc7230.

[Regex-TDFA] Chris Kuklewicz. Regex-TDFA: POSIX-compliant regular expression library for Haskell. URL:
http://hackage.haskell.org/package/regex-tdfa.

[SS88] Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, volume 1: Languages and Parsing. Springer,
1988.

[SSA] Lots of authors. Static Single Assignment Book. Springer, 2015. URL: http://ssabook.gforge.inria.
fr/latest/book.pdf.

[SW81] Douglas R Shier and Christoph Witzgall. Properties of labeling methods for determining shortest path
trees. Journal of Research of the National Bureau of Standards, 86(3):317–330, 1981.

[TCC] Tiny C Compiler. URL: http://bellard.org/tcc/.

[TRE] TRE: The free and portable approximate regex matching library. URL: http://laurikari.net/tre/,
URL: http://github.com/laurikari/tre/.

[Tro17] Ulya Trofimovich. Fork of the test suite for shortest path algorithms by Cherkassky, Goldberg, Radzik.
URL: https://github.com/skvadrik/cherkassky_goldberg_radzik, 2017.

[Wat93] Bruce William Watson. A taxonomy of finite automata construction algorithms. Eindhoven University
of Technology, Department of Mathematics and Computing Science, Computing Science Section, 1993.

32

